
A positive point charge is released from rest at a distance ${r_0}$ from a positive line charge with uniform density. The speed $v$ of the point charge, as a function of instantaneous distance $r$ from line charge, is proportional to
A. $v \propto {e^{ + r/{r_0}}}$
B. $v \propto \ell n\left( {\dfrac{r}{{{r_0}}}} \right)$
C. $v \propto \dfrac{r}{{{r_0}}}$
D. $v \propto \sqrt {\ell n\left( {\dfrac{r}{{{r_0}}}} \right)} $
Answer
217.8k+ views
Hint: You can apply conservation of energy in this system as there is no external force acting on the system.
When a point charge of mass $m$ is moving with some velocity $v$ , it possesses a kinetic energy which is given by $KE = \dfrac{1}{2}m{v^2}$ .
The electric field due to a line of charge at a distance $r$ is given by $E = \dfrac{\lambda }{{2\pi {\varepsilon _0}r}}$ where $\lambda $ is the linear charge density of the line of charge.
The potential energy at a point due to a point charge is the product of charge and electric potential at that point and relation between the potential and electric field is given by $dV = - \int {\vec E \cdot d\vec r} $ where $dV$ is the change in potential.
Complete step by step answer From the conditions given in the question it is clear that there is no external force acting on the system. So, we can apply conservation of energy on the system.
When a point charge of mass $m$ is moving with some velocity $v$ , it possesses a kinetic energy which is given by $KE = \dfrac{1}{2}m{v^2}$ .
Now, as the particle moves from ${r_0}$ to $r$ it must have done some work. And this work done will be the difference in the initial potential energy and final potential energy.
We know that the electric field due to a line of charge at a distance $r$ is given by $E = \dfrac{\lambda }{{2\pi {\varepsilon _0}r}}$ where $\lambda $ is the linear charge density of the line of charge.
The potential energy at a point due to a point charge is the product of charge and electric potential at that point and relation between the potential and electric field is given by $dV = - \int {\vec E \cdot d\vec r} $ where $dV$ is the change in potential.
So, the work done will be $W = - dV$
Now, the work done can be calculated after substituting the limits of integration as
$W = \int\limits_{{r_0}}^r {\dfrac{\lambda }{{2\pi {\varepsilon _0}r}}} dr = \dfrac{\lambda }{{2\pi {\varepsilon _0}}}\int\limits_{{r_0}}^r {\dfrac{{dr}}{r}} $
On simplifying the integration we have
$W = \dfrac{\lambda }{{2\pi {\varepsilon _0}}}\ell n\left( {\dfrac{r}{{{r_0}}}} \right)$
Now, we apply the conservation of energy and equate this work done with the kinetic energy of the point charge as
$\dfrac{1}{2}m{v^2} = \dfrac{\lambda }{{2\pi {\varepsilon _0}}}\ell n\left( {\dfrac{r}{{{r_0}}}} \right)$
So ignoring the constants we have
$v \propto \sqrt {\ell n\left( {\dfrac{r}{{{r_0}}}} \right)} $
Hence, option D is correct.
Note: The conservation of energy is basically a law which states that the energy is neither created nor destroyed although it can be converted into different forms. If a system is isolated from the surrounding i.e. there is no external force acting on the system, then the energy is conserved.
When a point charge of mass $m$ is moving with some velocity $v$ , it possesses a kinetic energy which is given by $KE = \dfrac{1}{2}m{v^2}$ .
The electric field due to a line of charge at a distance $r$ is given by $E = \dfrac{\lambda }{{2\pi {\varepsilon _0}r}}$ where $\lambda $ is the linear charge density of the line of charge.
The potential energy at a point due to a point charge is the product of charge and electric potential at that point and relation between the potential and electric field is given by $dV = - \int {\vec E \cdot d\vec r} $ where $dV$ is the change in potential.
Complete step by step answer From the conditions given in the question it is clear that there is no external force acting on the system. So, we can apply conservation of energy on the system.
When a point charge of mass $m$ is moving with some velocity $v$ , it possesses a kinetic energy which is given by $KE = \dfrac{1}{2}m{v^2}$ .
Now, as the particle moves from ${r_0}$ to $r$ it must have done some work. And this work done will be the difference in the initial potential energy and final potential energy.
We know that the electric field due to a line of charge at a distance $r$ is given by $E = \dfrac{\lambda }{{2\pi {\varepsilon _0}r}}$ where $\lambda $ is the linear charge density of the line of charge.
The potential energy at a point due to a point charge is the product of charge and electric potential at that point and relation between the potential and electric field is given by $dV = - \int {\vec E \cdot d\vec r} $ where $dV$ is the change in potential.
So, the work done will be $W = - dV$
Now, the work done can be calculated after substituting the limits of integration as
$W = \int\limits_{{r_0}}^r {\dfrac{\lambda }{{2\pi {\varepsilon _0}r}}} dr = \dfrac{\lambda }{{2\pi {\varepsilon _0}}}\int\limits_{{r_0}}^r {\dfrac{{dr}}{r}} $
On simplifying the integration we have
$W = \dfrac{\lambda }{{2\pi {\varepsilon _0}}}\ell n\left( {\dfrac{r}{{{r_0}}}} \right)$
Now, we apply the conservation of energy and equate this work done with the kinetic energy of the point charge as
$\dfrac{1}{2}m{v^2} = \dfrac{\lambda }{{2\pi {\varepsilon _0}}}\ell n\left( {\dfrac{r}{{{r_0}}}} \right)$
So ignoring the constants we have
$v \propto \sqrt {\ell n\left( {\dfrac{r}{{{r_0}}}} \right)} $
Hence, option D is correct.
Note: The conservation of energy is basically a law which states that the energy is neither created nor destroyed although it can be converted into different forms. If a system is isolated from the surrounding i.e. there is no external force acting on the system, then the energy is conserved.
Recently Updated Pages
Arithmetic, Geometric & Harmonic Progressions Explained

Cartesian Form of Vector Explained: Formula, Examples & Uses

Apparent Frequency Explained: Formula, Uses & Examples

Calorimetry: Definition, Principles & Calculations

Centrifugal Force Explained: Definition, Formula & Examples

Charge in a Magnetic Field: Definition, Formula & Examples

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

How to Convert a Galvanometer into an Ammeter or Voltmeter

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding Average and RMS Value in Electrical Circuits

