Answer

Verified

79.5k+ views

**Hint:**In this question, the concept of the apparent height will be used and first draw the ray diagram and then calculate the apparent height of the flame. And then show at which point the fish see the flame.

**Complete step by step answer:**

First, we will draw the following diagram as per the given situation,

As per the given data in the question we have the height of the flame above the water surface is $2\;{\text{m}}$ and the fish is $4\;{\text{m}}$under the water. The total depth of the pond is $5\;{\text{m}}$.

If we discuss the ray diagram we can see a ray will come from the flame and fall straight into the water surface. In this case for this ray the angle of incident will be zero. Thus, the angle of reflection will also be zero. So the ray will directly go to the fish's eyes.

Now another ray supposes at an incident angle $i$ fall in the water medium. Since water is denser medium as compared to air, so the ray will bend towards the normal and if we extend these two rays in backward direction they will meet at point $A$. So, the fish actually see the flame at point $A$ as shown in the figure.

Thus, the height of point$A$ from the fisheye will be ${h_2} + d$

Now, we will calculate the apparent height of the flame from the water surface that is ${h_2}$ by using the formula,

$\dfrac{{{h_2}}}{{{h_1}}} = \dfrac{{{n_2}}}{{{n_1}}}$

Where ${h_2}$ is apparent height from the water surface, ${h_1}$ is real height from the water surface, ${n_2}$ is refraction index of water, and ${n_1}$ is refraction index of air.

By substituting the values, we get,

$\implies {h_2} = {h_1} \times \dfrac{{{n_2}}}{{{n_1}}}$

$\implies {h_2} = 2 \times \dfrac{{\dfrac{4}{3}}}{1}$

By simplification we obtain,

${h_2} = \dfrac{8}{3}\;{\text{m}}$

Now, we calculate the distance of point $A$ from the fisheye as

${h_2} + d = \dfrac{8}{3} + 4$

By simplification we obtain the apparent height as,

${h_2} + d = \dfrac{{20}}{3}\;{\text{m}}$

Hence, the apparent height of flame from fisheyes is $\dfrac{{20}}{3}\;{\text{m}}$.

$\therefore $Option $\left( d \right)$ is the correct.

**Note:**In geometrical optics, to find their position of the image of a point source, it is necessary only to consider the paths of two light rays emanating from the source in different directions that reach the observer eyes and to find their point of intersection.

Recently Updated Pages

Name the scale on which the destructive energy of an class 11 physics JEE_Main

Write an article on the need and importance of sports class 10 english JEE_Main

Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main

Choose the one which best expresses the meaning of class 9 english JEE_Main

What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main

A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main