
A police party is chasing a dacoit in a jeep which is moving at a constant speed v. The dacoit is on a motorcycle. When he is at a distance x from the jeep, he accelerates from rest at a constant rate$\alpha $. Which of the following relations is true, if the police is able to catch the dacoit?
(a) ${v^2} \leqslant \alpha x$
(b ${v^2} \leqslant 2\alpha x$
(c) ${v^2} \geqslant 2\alpha x$
(d) ${v^2} \geqslant \alpha x$
Answer
221.1k+ views
Hint: The above problem can be solved by using the principle of kinematics. The police would catch the dacoit if the police cover the distance that is equal to the distance covered by the dacoit plus the initial distance between the car and jeep in the same duration.
Complete step by step answer
Given: The speed of the dacoit is v, the initial distance between the jeep and motorcycle is x, the acceleration of the motorcycle is $\alpha $.
The distance covered by the dacoit on the motorcycle is given as:
$d = vt......\left( 1 \right)$
The distance covered by the jeep to catch the dacoit is given as:
$X = \dfrac{1}{2}a{t^2} + x......\left( 2 \right)$
Equate the equation (1) and equation (2) to find the required relation.
$X = d$
$\dfrac{1}{2}\alpha {t^2} + x = vt$
$\alpha {t^2} + 2x = 2vt$
$\alpha {t^2} - 2vt + 2x = 0......\left( 3 \right)$
The police catch the dacoit if the roots of the quadratic equation (3) are real and unequal. The discriminant of the quadratic equation for real and unequal roots is given as:
$D \geqslant 0$
The discriminant of the quadratic equation (3) is given as:
${\left( { - 2v} \right)^2} - 4\left( \alpha \right)\left( {2x} \right) \geqslant 0$
${v^2} - 2\alpha x \geqslant 0$
${v^2} \geqslant 2\alpha x$
Thus, the true relation for catching the dacoit is ${v^2} \geqslant 2\alpha x$ and the option (c) is the correct answer.
Note: The above problem can also be solved by using the concept of the relative motion. The dacoit can be assumed stationary at some separation and police moves relative to the dacoit.
Complete step by step answer
Given: The speed of the dacoit is v, the initial distance between the jeep and motorcycle is x, the acceleration of the motorcycle is $\alpha $.
The distance covered by the dacoit on the motorcycle is given as:
$d = vt......\left( 1 \right)$
The distance covered by the jeep to catch the dacoit is given as:
$X = \dfrac{1}{2}a{t^2} + x......\left( 2 \right)$
Equate the equation (1) and equation (2) to find the required relation.
$X = d$
$\dfrac{1}{2}\alpha {t^2} + x = vt$
$\alpha {t^2} + 2x = 2vt$
$\alpha {t^2} - 2vt + 2x = 0......\left( 3 \right)$
The police catch the dacoit if the roots of the quadratic equation (3) are real and unequal. The discriminant of the quadratic equation for real and unequal roots is given as:
$D \geqslant 0$
The discriminant of the quadratic equation (3) is given as:
${\left( { - 2v} \right)^2} - 4\left( \alpha \right)\left( {2x} \right) \geqslant 0$
${v^2} - 2\alpha x \geqslant 0$
${v^2} \geqslant 2\alpha x$
Thus, the true relation for catching the dacoit is ${v^2} \geqslant 2\alpha x$ and the option (c) is the correct answer.
Note: The above problem can also be solved by using the concept of the relative motion. The dacoit can be assumed stationary at some separation and police moves relative to the dacoit.
Recently Updated Pages
Two discs which are rotating about their respective class 11 physics JEE_Main

A ladder rests against a frictionless vertical wall class 11 physics JEE_Main

Two simple pendulums of lengths 1 m and 16 m respectively class 11 physics JEE_Main

The slopes of isothermal and adiabatic curves are related class 11 physics JEE_Main

A trolly falling freely on an inclined plane as shown class 11 physics JEE_Main

The masses M1 and M2M2 M1 are released from rest Using class 11 physics JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Other Pages
Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

