
A point charge $\left( q \right)$ is placed at the origin. Let ${\vec E_A}$,${\vec E_B}$${\vec E_C}$ be the electric fields at three points \[A\left( {1,2,3} \right), B\left( {1,1, - 1} \right),C\left( {2,2,2} \right)\]respectively due to the charge $\left( q \right)$. Then ,
$
\left( 1 \right){{\vec E}_A} \bot {{\vec E}_B} \\
\left( 2 \right)\left| {{{\vec E}_b}} \right| = 4\left| {{{\vec E}_c}} \right| \\
$
Select the correct alternative
a) Only $\left( 1 \right)$ is correct
b) Only\[\left( 2 \right)\] is correct
c) Both $\left( 1 \right)$ and $\left( 2 \right)$ are correct
d) Both $\left( 1 \right)$ and $\left( 2 \right)$ are wrong
Answer
232.8k+ views
Hint: 1) The vector form coordinates as written as $x\hat i + y\hat j + z\hat k$.
2) If two vectors are perpendicular, then their dot product is zero.
3) The magnitude of the vector is calculated as $\left| A \right| = \sqrt {{x^2} \times {y^2} \times {z^2}} $.
4) A unit vector for a given vector in its direction is calculated as \[\vec A = \dfrac{{x\hat i + y\hat j + z\hat k}}{{\sqrt {{x^2} + {y^2} + {z^2}} }}\].
Complete step by step solution:
We know that the electric field vector ${\vec E_A}$can be written as,
\[
{{\vec E}_A} = \dfrac{{kq}}{{{{\left| {{{\vec r}_{OA}}} \right|}^2}}} \times {{\hat r}_{OA}} \\
\therefore {{\vec E}_A} = \dfrac{{kq}}{{{{\left| {\sqrt {{1^2} + {2^2} + {3^2}} } \right|}^2}}} \times \dfrac{{1\hat i + 2\hat j + 3\hat k}}{{\sqrt {{1^2} + {2^2} + {3^2}} }} \\
\Rightarrow {{\vec E}_A} = \dfrac{{kq}}{{{{\left| {\sqrt {14} } \right|}^2}}} \times \dfrac{{1\hat i + 2\hat j + 3\hat k}}{{\sqrt {14} }} \\
\Rightarrow {{\vec E}_A} = \dfrac{{kq\left( {1\hat i + 2\hat j + 3\hat k} \right)}}{{14\sqrt {14} }} \\
\]
Now similarly we will calculate for vector${\vec E_B}$
\[
{{\vec E}_B} = \dfrac{{kq}}{{{{\left| {{{\vec r}_{OB}}} \right|}^2}}} \times {{\hat r}_{OB}} \\
\therefore {{\vec E}_B} = \dfrac{{kq}}{{{{\left| {\sqrt {{1^2} + {1^2} + {{\left( { - 1} \right)}^2}} } \right|}^2}}} \times \dfrac{{1\hat i + 1\hat j - 1\hat k}}{{\sqrt {{1^2} + {1^2} + {{\left( { - 1} \right)}^2}} }} \\
\Rightarrow {{\vec E}_B} = \dfrac{{kq}}{{{{\left| {\sqrt 3 } \right|}^2}}} \times \dfrac{{1\hat i + 1\hat j - 1\hat k}}{{\sqrt 3 }} \\
\Rightarrow {{\vec E}_B} = \dfrac{{kq\left( {1\hat i + 2\hat j + 3\hat k} \right)}}{{3\sqrt 3 }} \\
\]
similarly, we will calculate for vector ${\vec E_C}$
\[
{{\vec E}_C} = \dfrac{{kq}}{{{{\left| {{{\vec r}_{OC}}} \right|}^2}}} \times {{\hat r}_{OC}} \\
\therefore {{\vec E}_C} = \dfrac{{kq}}{{{{\left| {\sqrt {{2^2} + {2^2} + {2^2}} } \right|}^2}}} \times \dfrac{{2\hat i + 2\hat j + 2\hat k}}{{\sqrt {{2^2} + {2^2} + {2^2}} }} \\
\Rightarrow {{\vec E}_C} = \dfrac{{kq}}{{{{\left| {\sqrt {12} } \right|}^2}}} \times \dfrac{{2\hat i + 2\hat j + 2\hat k}}{{\sqrt {12} }} \\
\Rightarrow {{\vec E}_C} = \dfrac{{kq\left( {2\hat i + 2\hat j + 2\hat k} \right)}}{{12 \times 2\sqrt 3 }} \\
\]
Taking 2 OUT and canceling it by the 2 in the denominator the above equation can be written as
\[ \Rightarrow {\vec E_C} = \dfrac{{kq\left( {\hat i + \hat j + \hat k} \right)}}{{12\sqrt 3 }}\]
Now for the first option $\left( 1 \right)$:
We know that if two vectors are perpendicular to each other their dot product will be zero
If ${\vec E_A} \bot {\vec E_B}$
$\therefore {\vec E_A}.{\vec E_B} = 0$
Substituting the values of both vectors we get
\[
{{\vec E}_A}.{{\vec E}_B} = \left( {\dfrac{{kq}}{{14\sqrt {14} }}} \right)\left( {1\hat i + 2\hat j + 3\hat k} \right).\left( {\dfrac{{kq}}{{3\sqrt 3 }}} \right)\left( {1\hat i + 1\hat j - 1\hat k} \right) \\
\Rightarrow {{\vec E}_A}.{{\vec E}_B} = \left( {\dfrac{{kq}}{{14\sqrt {14} }}} \right)\left( {\dfrac{{kq}}{{3\sqrt 3 }}} \right)\left( {\left( {1\hat i.1\hat i} \right) + \left( {2\hat j.1\hat j} \right) + \left( {3\hat k.\left( { - 1\hat k} \right)} \right)} \right) \\
\Rightarrow {{\vec E}_A}.{{\vec E}_B} = \left( {\dfrac{{kq}}{{14\sqrt {14} }}} \right)\left( {\dfrac{{kq}}{{3\sqrt 3 }}} \right)\left( {1 + 2 - 3} \right) \\
\Rightarrow {{\vec E}_A}.{{\vec E}_B} = 0 \\
\]
Here we have seen that the dot product of both the vectors is zero hence the required condition is satisfied so we can say that ${\vec E_A} \bot {\vec E_B}$.
So, the option $\left( 1 \right)$is correct.
Now for the first option $\left( 2 \right)$:
We know that
$
\left| {{{\vec E}_B}} \right| = \dfrac{{kq}}{{{{\left| {{{\vec r}_{OB}}} \right|}^2}}} \\
\therefore \left| {{{\vec E}_B}} \right| = \dfrac{{kq}}{{{{\left| {\sqrt {{1^2} + {1^2} + {{\left( { - 1} \right)}^2}} } \right|}^2}}} \\
$
$ \Rightarrow \left| {{{\vec E}_B}} \right| = \dfrac{{kq}}{3}$______________________$\left( a \right)$
Now similarly,
$
\left| {{{\vec E}_C}} \right| = \dfrac{{kq}}{{{{\left| {{{\vec r}_{OC}}} \right|}^2}}} \\
\therefore \left| {{{\vec E}_C}} \right| = \dfrac{{kq}}{{{{\left| {\sqrt {{2^2} + {2^2} + {2^2}} } \right|}^2}}} \\
\\
$
$ \Rightarrow \left| {{{\vec E}_C}} \right| = \dfrac{{kq}}{{12}}$_________________________$\left( b \right)$
On dividing the equation $\left( a \right)$by$\left( b \right)$ we get
\[
\dfrac{{\left| {{{\vec E}_B}} \right|}}{{\left| {{{\vec E}_C}} \right|}} = \dfrac{{\left( {\dfrac{{kq}}{3}} \right)}}{{\left( {\dfrac{{kq}}{{12}}} \right)}} \\
\Rightarrow \dfrac{{\left| {{{\vec E}_B}} \right|}}{{\left| {{{\vec E}_C}} \right|}} = 4 \\
\\
\]
So, we can say that
\[\left| {{{\vec E}_B}} \right| = 4\left| {{{\vec E}_C}} \right|\] Hence option $\left( 2 \right)$ is also correct.
Both $\left( 1 \right)$ and $\left( 2 \right)$ are correct
Note: The unit vector in the direction vector is the vector divided by its mod
In the dot multiplication, $\left( {\hat i} \right)$is always multiplied with $\left( {\hat i} \right)$similarly $\left( {\hat j} \right)$is multiplied with $\left( {\hat j} \right)$and $\left( {\hat k} \right)$is multiplied with $\left( {\hat k} \right)$, and they all are summed together.
In dot product \[\left( {\hat i.\hat i} \right) = 1,\left( {\hat j.\hat j = 1} \right)\]and $\left( {\hat k.\hat k} \right) = 1$
In vector calculation direction of the vector is very important and must be taken care of.
If two vectors are perpendicular, their dot product will be zero.
2) If two vectors are perpendicular, then their dot product is zero.
3) The magnitude of the vector is calculated as $\left| A \right| = \sqrt {{x^2} \times {y^2} \times {z^2}} $.
4) A unit vector for a given vector in its direction is calculated as \[\vec A = \dfrac{{x\hat i + y\hat j + z\hat k}}{{\sqrt {{x^2} + {y^2} + {z^2}} }}\].
Complete step by step solution:
We know that the electric field vector ${\vec E_A}$can be written as,
\[
{{\vec E}_A} = \dfrac{{kq}}{{{{\left| {{{\vec r}_{OA}}} \right|}^2}}} \times {{\hat r}_{OA}} \\
\therefore {{\vec E}_A} = \dfrac{{kq}}{{{{\left| {\sqrt {{1^2} + {2^2} + {3^2}} } \right|}^2}}} \times \dfrac{{1\hat i + 2\hat j + 3\hat k}}{{\sqrt {{1^2} + {2^2} + {3^2}} }} \\
\Rightarrow {{\vec E}_A} = \dfrac{{kq}}{{{{\left| {\sqrt {14} } \right|}^2}}} \times \dfrac{{1\hat i + 2\hat j + 3\hat k}}{{\sqrt {14} }} \\
\Rightarrow {{\vec E}_A} = \dfrac{{kq\left( {1\hat i + 2\hat j + 3\hat k} \right)}}{{14\sqrt {14} }} \\
\]
Now similarly we will calculate for vector${\vec E_B}$
\[
{{\vec E}_B} = \dfrac{{kq}}{{{{\left| {{{\vec r}_{OB}}} \right|}^2}}} \times {{\hat r}_{OB}} \\
\therefore {{\vec E}_B} = \dfrac{{kq}}{{{{\left| {\sqrt {{1^2} + {1^2} + {{\left( { - 1} \right)}^2}} } \right|}^2}}} \times \dfrac{{1\hat i + 1\hat j - 1\hat k}}{{\sqrt {{1^2} + {1^2} + {{\left( { - 1} \right)}^2}} }} \\
\Rightarrow {{\vec E}_B} = \dfrac{{kq}}{{{{\left| {\sqrt 3 } \right|}^2}}} \times \dfrac{{1\hat i + 1\hat j - 1\hat k}}{{\sqrt 3 }} \\
\Rightarrow {{\vec E}_B} = \dfrac{{kq\left( {1\hat i + 2\hat j + 3\hat k} \right)}}{{3\sqrt 3 }} \\
\]
similarly, we will calculate for vector ${\vec E_C}$
\[
{{\vec E}_C} = \dfrac{{kq}}{{{{\left| {{{\vec r}_{OC}}} \right|}^2}}} \times {{\hat r}_{OC}} \\
\therefore {{\vec E}_C} = \dfrac{{kq}}{{{{\left| {\sqrt {{2^2} + {2^2} + {2^2}} } \right|}^2}}} \times \dfrac{{2\hat i + 2\hat j + 2\hat k}}{{\sqrt {{2^2} + {2^2} + {2^2}} }} \\
\Rightarrow {{\vec E}_C} = \dfrac{{kq}}{{{{\left| {\sqrt {12} } \right|}^2}}} \times \dfrac{{2\hat i + 2\hat j + 2\hat k}}{{\sqrt {12} }} \\
\Rightarrow {{\vec E}_C} = \dfrac{{kq\left( {2\hat i + 2\hat j + 2\hat k} \right)}}{{12 \times 2\sqrt 3 }} \\
\]
Taking 2 OUT and canceling it by the 2 in the denominator the above equation can be written as
\[ \Rightarrow {\vec E_C} = \dfrac{{kq\left( {\hat i + \hat j + \hat k} \right)}}{{12\sqrt 3 }}\]
Now for the first option $\left( 1 \right)$:
We know that if two vectors are perpendicular to each other their dot product will be zero
If ${\vec E_A} \bot {\vec E_B}$
$\therefore {\vec E_A}.{\vec E_B} = 0$
Substituting the values of both vectors we get
\[
{{\vec E}_A}.{{\vec E}_B} = \left( {\dfrac{{kq}}{{14\sqrt {14} }}} \right)\left( {1\hat i + 2\hat j + 3\hat k} \right).\left( {\dfrac{{kq}}{{3\sqrt 3 }}} \right)\left( {1\hat i + 1\hat j - 1\hat k} \right) \\
\Rightarrow {{\vec E}_A}.{{\vec E}_B} = \left( {\dfrac{{kq}}{{14\sqrt {14} }}} \right)\left( {\dfrac{{kq}}{{3\sqrt 3 }}} \right)\left( {\left( {1\hat i.1\hat i} \right) + \left( {2\hat j.1\hat j} \right) + \left( {3\hat k.\left( { - 1\hat k} \right)} \right)} \right) \\
\Rightarrow {{\vec E}_A}.{{\vec E}_B} = \left( {\dfrac{{kq}}{{14\sqrt {14} }}} \right)\left( {\dfrac{{kq}}{{3\sqrt 3 }}} \right)\left( {1 + 2 - 3} \right) \\
\Rightarrow {{\vec E}_A}.{{\vec E}_B} = 0 \\
\]
Here we have seen that the dot product of both the vectors is zero hence the required condition is satisfied so we can say that ${\vec E_A} \bot {\vec E_B}$.
So, the option $\left( 1 \right)$is correct.
Now for the first option $\left( 2 \right)$:
We know that
$
\left| {{{\vec E}_B}} \right| = \dfrac{{kq}}{{{{\left| {{{\vec r}_{OB}}} \right|}^2}}} \\
\therefore \left| {{{\vec E}_B}} \right| = \dfrac{{kq}}{{{{\left| {\sqrt {{1^2} + {1^2} + {{\left( { - 1} \right)}^2}} } \right|}^2}}} \\
$
$ \Rightarrow \left| {{{\vec E}_B}} \right| = \dfrac{{kq}}{3}$______________________$\left( a \right)$
Now similarly,
$
\left| {{{\vec E}_C}} \right| = \dfrac{{kq}}{{{{\left| {{{\vec r}_{OC}}} \right|}^2}}} \\
\therefore \left| {{{\vec E}_C}} \right| = \dfrac{{kq}}{{{{\left| {\sqrt {{2^2} + {2^2} + {2^2}} } \right|}^2}}} \\
\\
$
$ \Rightarrow \left| {{{\vec E}_C}} \right| = \dfrac{{kq}}{{12}}$_________________________$\left( b \right)$
On dividing the equation $\left( a \right)$by$\left( b \right)$ we get
\[
\dfrac{{\left| {{{\vec E}_B}} \right|}}{{\left| {{{\vec E}_C}} \right|}} = \dfrac{{\left( {\dfrac{{kq}}{3}} \right)}}{{\left( {\dfrac{{kq}}{{12}}} \right)}} \\
\Rightarrow \dfrac{{\left| {{{\vec E}_B}} \right|}}{{\left| {{{\vec E}_C}} \right|}} = 4 \\
\\
\]
So, we can say that
\[\left| {{{\vec E}_B}} \right| = 4\left| {{{\vec E}_C}} \right|\] Hence option $\left( 2 \right)$ is also correct.
Both $\left( 1 \right)$ and $\left( 2 \right)$ are correct
Note: The unit vector in the direction vector is the vector divided by its mod
In the dot multiplication, $\left( {\hat i} \right)$is always multiplied with $\left( {\hat i} \right)$similarly $\left( {\hat j} \right)$is multiplied with $\left( {\hat j} \right)$and $\left( {\hat k} \right)$is multiplied with $\left( {\hat k} \right)$, and they all are summed together.
In dot product \[\left( {\hat i.\hat i} \right) = 1,\left( {\hat j.\hat j = 1} \right)\]and $\left( {\hat k.\hat k} \right) = 1$
In vector calculation direction of the vector is very important and must be taken care of.
If two vectors are perpendicular, their dot product will be zero.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Uniform Acceleration in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

