A point charge $\left( q \right)$ is placed at the origin. Let ${\vec E_A}$,${\vec E_B}$${\vec E_C}$ be the electric fields at three points \[A\left( {1,2,3} \right), B\left( {1,1, - 1} \right),C\left( {2,2,2} \right)\]respectively due to the charge $\left( q \right)$. Then ,
$
\left( 1 \right){{\vec E}_A} \bot {{\vec E}_B} \\
\left( 2 \right)\left| {{{\vec E}_b}} \right| = 4\left| {{{\vec E}_c}} \right| \\
$
Select the correct alternative
a) Only $\left( 1 \right)$ is correct
b) Only\[\left( 2 \right)\] is correct
c) Both $\left( 1 \right)$ and $\left( 2 \right)$ are correct
d) Both $\left( 1 \right)$ and $\left( 2 \right)$ are wrong
Answer
Verified
119.4k+ views
Hint: 1) The vector form coordinates as written as $x\hat i + y\hat j + z\hat k$.
2) If two vectors are perpendicular, then their dot product is zero.
3) The magnitude of the vector is calculated as $\left| A \right| = \sqrt {{x^2} \times {y^2} \times {z^2}} $.
4) A unit vector for a given vector in its direction is calculated as \[\vec A = \dfrac{{x\hat i + y\hat j + z\hat k}}{{\sqrt {{x^2} + {y^2} + {z^2}} }}\].
Complete step by step solution:
We know that the electric field vector ${\vec E_A}$can be written as,
\[
{{\vec E}_A} = \dfrac{{kq}}{{{{\left| {{{\vec r}_{OA}}} \right|}^2}}} \times {{\hat r}_{OA}} \\
\therefore {{\vec E}_A} = \dfrac{{kq}}{{{{\left| {\sqrt {{1^2} + {2^2} + {3^2}} } \right|}^2}}} \times \dfrac{{1\hat i + 2\hat j + 3\hat k}}{{\sqrt {{1^2} + {2^2} + {3^2}} }} \\
\Rightarrow {{\vec E}_A} = \dfrac{{kq}}{{{{\left| {\sqrt {14} } \right|}^2}}} \times \dfrac{{1\hat i + 2\hat j + 3\hat k}}{{\sqrt {14} }} \\
\Rightarrow {{\vec E}_A} = \dfrac{{kq\left( {1\hat i + 2\hat j + 3\hat k} \right)}}{{14\sqrt {14} }} \\
\]
Now similarly we will calculate for vector${\vec E_B}$
\[
{{\vec E}_B} = \dfrac{{kq}}{{{{\left| {{{\vec r}_{OB}}} \right|}^2}}} \times {{\hat r}_{OB}} \\
\therefore {{\vec E}_B} = \dfrac{{kq}}{{{{\left| {\sqrt {{1^2} + {1^2} + {{\left( { - 1} \right)}^2}} } \right|}^2}}} \times \dfrac{{1\hat i + 1\hat j - 1\hat k}}{{\sqrt {{1^2} + {1^2} + {{\left( { - 1} \right)}^2}} }} \\
\Rightarrow {{\vec E}_B} = \dfrac{{kq}}{{{{\left| {\sqrt 3 } \right|}^2}}} \times \dfrac{{1\hat i + 1\hat j - 1\hat k}}{{\sqrt 3 }} \\
\Rightarrow {{\vec E}_B} = \dfrac{{kq\left( {1\hat i + 2\hat j + 3\hat k} \right)}}{{3\sqrt 3 }} \\
\]
similarly, we will calculate for vector ${\vec E_C}$
\[
{{\vec E}_C} = \dfrac{{kq}}{{{{\left| {{{\vec r}_{OC}}} \right|}^2}}} \times {{\hat r}_{OC}} \\
\therefore {{\vec E}_C} = \dfrac{{kq}}{{{{\left| {\sqrt {{2^2} + {2^2} + {2^2}} } \right|}^2}}} \times \dfrac{{2\hat i + 2\hat j + 2\hat k}}{{\sqrt {{2^2} + {2^2} + {2^2}} }} \\
\Rightarrow {{\vec E}_C} = \dfrac{{kq}}{{{{\left| {\sqrt {12} } \right|}^2}}} \times \dfrac{{2\hat i + 2\hat j + 2\hat k}}{{\sqrt {12} }} \\
\Rightarrow {{\vec E}_C} = \dfrac{{kq\left( {2\hat i + 2\hat j + 2\hat k} \right)}}{{12 \times 2\sqrt 3 }} \\
\]
Taking 2 OUT and canceling it by the 2 in the denominator the above equation can be written as
\[ \Rightarrow {\vec E_C} = \dfrac{{kq\left( {\hat i + \hat j + \hat k} \right)}}{{12\sqrt 3 }}\]
Now for the first option $\left( 1 \right)$:
We know that if two vectors are perpendicular to each other their dot product will be zero
If ${\vec E_A} \bot {\vec E_B}$
$\therefore {\vec E_A}.{\vec E_B} = 0$
Substituting the values of both vectors we get
\[
{{\vec E}_A}.{{\vec E}_B} = \left( {\dfrac{{kq}}{{14\sqrt {14} }}} \right)\left( {1\hat i + 2\hat j + 3\hat k} \right).\left( {\dfrac{{kq}}{{3\sqrt 3 }}} \right)\left( {1\hat i + 1\hat j - 1\hat k} \right) \\
\Rightarrow {{\vec E}_A}.{{\vec E}_B} = \left( {\dfrac{{kq}}{{14\sqrt {14} }}} \right)\left( {\dfrac{{kq}}{{3\sqrt 3 }}} \right)\left( {\left( {1\hat i.1\hat i} \right) + \left( {2\hat j.1\hat j} \right) + \left( {3\hat k.\left( { - 1\hat k} \right)} \right)} \right) \\
\Rightarrow {{\vec E}_A}.{{\vec E}_B} = \left( {\dfrac{{kq}}{{14\sqrt {14} }}} \right)\left( {\dfrac{{kq}}{{3\sqrt 3 }}} \right)\left( {1 + 2 - 3} \right) \\
\Rightarrow {{\vec E}_A}.{{\vec E}_B} = 0 \\
\]
Here we have seen that the dot product of both the vectors is zero hence the required condition is satisfied so we can say that ${\vec E_A} \bot {\vec E_B}$.
So, the option $\left( 1 \right)$is correct.
Now for the first option $\left( 2 \right)$:
We know that
$
\left| {{{\vec E}_B}} \right| = \dfrac{{kq}}{{{{\left| {{{\vec r}_{OB}}} \right|}^2}}} \\
\therefore \left| {{{\vec E}_B}} \right| = \dfrac{{kq}}{{{{\left| {\sqrt {{1^2} + {1^2} + {{\left( { - 1} \right)}^2}} } \right|}^2}}} \\
$
$ \Rightarrow \left| {{{\vec E}_B}} \right| = \dfrac{{kq}}{3}$______________________$\left( a \right)$
Now similarly,
$
\left| {{{\vec E}_C}} \right| = \dfrac{{kq}}{{{{\left| {{{\vec r}_{OC}}} \right|}^2}}} \\
\therefore \left| {{{\vec E}_C}} \right| = \dfrac{{kq}}{{{{\left| {\sqrt {{2^2} + {2^2} + {2^2}} } \right|}^2}}} \\
\\
$
$ \Rightarrow \left| {{{\vec E}_C}} \right| = \dfrac{{kq}}{{12}}$_________________________$\left( b \right)$
On dividing the equation $\left( a \right)$by$\left( b \right)$ we get
\[
\dfrac{{\left| {{{\vec E}_B}} \right|}}{{\left| {{{\vec E}_C}} \right|}} = \dfrac{{\left( {\dfrac{{kq}}{3}} \right)}}{{\left( {\dfrac{{kq}}{{12}}} \right)}} \\
\Rightarrow \dfrac{{\left| {{{\vec E}_B}} \right|}}{{\left| {{{\vec E}_C}} \right|}} = 4 \\
\\
\]
So, we can say that
\[\left| {{{\vec E}_B}} \right| = 4\left| {{{\vec E}_C}} \right|\] Hence option $\left( 2 \right)$ is also correct.
Both $\left( 1 \right)$ and $\left( 2 \right)$ are correct
Note: The unit vector in the direction vector is the vector divided by its mod
In the dot multiplication, $\left( {\hat i} \right)$is always multiplied with $\left( {\hat i} \right)$similarly $\left( {\hat j} \right)$is multiplied with $\left( {\hat j} \right)$and $\left( {\hat k} \right)$is multiplied with $\left( {\hat k} \right)$, and they all are summed together.
In dot product \[\left( {\hat i.\hat i} \right) = 1,\left( {\hat j.\hat j = 1} \right)\]and $\left( {\hat k.\hat k} \right) = 1$
In vector calculation direction of the vector is very important and must be taken care of.
If two vectors are perpendicular, their dot product will be zero.
2) If two vectors are perpendicular, then their dot product is zero.
3) The magnitude of the vector is calculated as $\left| A \right| = \sqrt {{x^2} \times {y^2} \times {z^2}} $.
4) A unit vector for a given vector in its direction is calculated as \[\vec A = \dfrac{{x\hat i + y\hat j + z\hat k}}{{\sqrt {{x^2} + {y^2} + {z^2}} }}\].
Complete step by step solution:
We know that the electric field vector ${\vec E_A}$can be written as,
\[
{{\vec E}_A} = \dfrac{{kq}}{{{{\left| {{{\vec r}_{OA}}} \right|}^2}}} \times {{\hat r}_{OA}} \\
\therefore {{\vec E}_A} = \dfrac{{kq}}{{{{\left| {\sqrt {{1^2} + {2^2} + {3^2}} } \right|}^2}}} \times \dfrac{{1\hat i + 2\hat j + 3\hat k}}{{\sqrt {{1^2} + {2^2} + {3^2}} }} \\
\Rightarrow {{\vec E}_A} = \dfrac{{kq}}{{{{\left| {\sqrt {14} } \right|}^2}}} \times \dfrac{{1\hat i + 2\hat j + 3\hat k}}{{\sqrt {14} }} \\
\Rightarrow {{\vec E}_A} = \dfrac{{kq\left( {1\hat i + 2\hat j + 3\hat k} \right)}}{{14\sqrt {14} }} \\
\]
Now similarly we will calculate for vector${\vec E_B}$
\[
{{\vec E}_B} = \dfrac{{kq}}{{{{\left| {{{\vec r}_{OB}}} \right|}^2}}} \times {{\hat r}_{OB}} \\
\therefore {{\vec E}_B} = \dfrac{{kq}}{{{{\left| {\sqrt {{1^2} + {1^2} + {{\left( { - 1} \right)}^2}} } \right|}^2}}} \times \dfrac{{1\hat i + 1\hat j - 1\hat k}}{{\sqrt {{1^2} + {1^2} + {{\left( { - 1} \right)}^2}} }} \\
\Rightarrow {{\vec E}_B} = \dfrac{{kq}}{{{{\left| {\sqrt 3 } \right|}^2}}} \times \dfrac{{1\hat i + 1\hat j - 1\hat k}}{{\sqrt 3 }} \\
\Rightarrow {{\vec E}_B} = \dfrac{{kq\left( {1\hat i + 2\hat j + 3\hat k} \right)}}{{3\sqrt 3 }} \\
\]
similarly, we will calculate for vector ${\vec E_C}$
\[
{{\vec E}_C} = \dfrac{{kq}}{{{{\left| {{{\vec r}_{OC}}} \right|}^2}}} \times {{\hat r}_{OC}} \\
\therefore {{\vec E}_C} = \dfrac{{kq}}{{{{\left| {\sqrt {{2^2} + {2^2} + {2^2}} } \right|}^2}}} \times \dfrac{{2\hat i + 2\hat j + 2\hat k}}{{\sqrt {{2^2} + {2^2} + {2^2}} }} \\
\Rightarrow {{\vec E}_C} = \dfrac{{kq}}{{{{\left| {\sqrt {12} } \right|}^2}}} \times \dfrac{{2\hat i + 2\hat j + 2\hat k}}{{\sqrt {12} }} \\
\Rightarrow {{\vec E}_C} = \dfrac{{kq\left( {2\hat i + 2\hat j + 2\hat k} \right)}}{{12 \times 2\sqrt 3 }} \\
\]
Taking 2 OUT and canceling it by the 2 in the denominator the above equation can be written as
\[ \Rightarrow {\vec E_C} = \dfrac{{kq\left( {\hat i + \hat j + \hat k} \right)}}{{12\sqrt 3 }}\]
Now for the first option $\left( 1 \right)$:
We know that if two vectors are perpendicular to each other their dot product will be zero
If ${\vec E_A} \bot {\vec E_B}$
$\therefore {\vec E_A}.{\vec E_B} = 0$
Substituting the values of both vectors we get
\[
{{\vec E}_A}.{{\vec E}_B} = \left( {\dfrac{{kq}}{{14\sqrt {14} }}} \right)\left( {1\hat i + 2\hat j + 3\hat k} \right).\left( {\dfrac{{kq}}{{3\sqrt 3 }}} \right)\left( {1\hat i + 1\hat j - 1\hat k} \right) \\
\Rightarrow {{\vec E}_A}.{{\vec E}_B} = \left( {\dfrac{{kq}}{{14\sqrt {14} }}} \right)\left( {\dfrac{{kq}}{{3\sqrt 3 }}} \right)\left( {\left( {1\hat i.1\hat i} \right) + \left( {2\hat j.1\hat j} \right) + \left( {3\hat k.\left( { - 1\hat k} \right)} \right)} \right) \\
\Rightarrow {{\vec E}_A}.{{\vec E}_B} = \left( {\dfrac{{kq}}{{14\sqrt {14} }}} \right)\left( {\dfrac{{kq}}{{3\sqrt 3 }}} \right)\left( {1 + 2 - 3} \right) \\
\Rightarrow {{\vec E}_A}.{{\vec E}_B} = 0 \\
\]
Here we have seen that the dot product of both the vectors is zero hence the required condition is satisfied so we can say that ${\vec E_A} \bot {\vec E_B}$.
So, the option $\left( 1 \right)$is correct.
Now for the first option $\left( 2 \right)$:
We know that
$
\left| {{{\vec E}_B}} \right| = \dfrac{{kq}}{{{{\left| {{{\vec r}_{OB}}} \right|}^2}}} \\
\therefore \left| {{{\vec E}_B}} \right| = \dfrac{{kq}}{{{{\left| {\sqrt {{1^2} + {1^2} + {{\left( { - 1} \right)}^2}} } \right|}^2}}} \\
$
$ \Rightarrow \left| {{{\vec E}_B}} \right| = \dfrac{{kq}}{3}$______________________$\left( a \right)$
Now similarly,
$
\left| {{{\vec E}_C}} \right| = \dfrac{{kq}}{{{{\left| {{{\vec r}_{OC}}} \right|}^2}}} \\
\therefore \left| {{{\vec E}_C}} \right| = \dfrac{{kq}}{{{{\left| {\sqrt {{2^2} + {2^2} + {2^2}} } \right|}^2}}} \\
\\
$
$ \Rightarrow \left| {{{\vec E}_C}} \right| = \dfrac{{kq}}{{12}}$_________________________$\left( b \right)$
On dividing the equation $\left( a \right)$by$\left( b \right)$ we get
\[
\dfrac{{\left| {{{\vec E}_B}} \right|}}{{\left| {{{\vec E}_C}} \right|}} = \dfrac{{\left( {\dfrac{{kq}}{3}} \right)}}{{\left( {\dfrac{{kq}}{{12}}} \right)}} \\
\Rightarrow \dfrac{{\left| {{{\vec E}_B}} \right|}}{{\left| {{{\vec E}_C}} \right|}} = 4 \\
\\
\]
So, we can say that
\[\left| {{{\vec E}_B}} \right| = 4\left| {{{\vec E}_C}} \right|\] Hence option $\left( 2 \right)$ is also correct.
Both $\left( 1 \right)$ and $\left( 2 \right)$ are correct
Note: The unit vector in the direction vector is the vector divided by its mod
In the dot multiplication, $\left( {\hat i} \right)$is always multiplied with $\left( {\hat i} \right)$similarly $\left( {\hat j} \right)$is multiplied with $\left( {\hat j} \right)$and $\left( {\hat k} \right)$is multiplied with $\left( {\hat k} \right)$, and they all are summed together.
In dot product \[\left( {\hat i.\hat i} \right) = 1,\left( {\hat j.\hat j = 1} \right)\]and $\left( {\hat k.\hat k} \right) = 1$
In vector calculation direction of the vector is very important and must be taken care of.
If two vectors are perpendicular, their dot product will be zero.
Recently Updated Pages
Young's Double Slit Experiment Step by Step Derivation
Difference Between Circuit Switching and Packet Switching
Difference Between Mass and Weight
JEE Main Participating Colleges 2024 - A Complete List of Top Colleges
JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips
Sign up for JEE Main 2025 Live Classes - Vedantu
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
Dual Nature of Radiation and Matter Class 12 Notes CBSE Physics Chapter 11 (Free PDF Download)
Electric field due to uniformly charged sphere class 12 physics JEE_Main
Degree of Dissociation and Its Formula With Solved Example for JEE
Diffraction of Light - Young’s Single Slit Experiment
JEE Main 2025: Derivation of Equation of Trajectory in Physics