
A playground merry-go-round has radius 2.40 m and moment of inertia 2100 \[kg{{m}^{2}}\] about a vertical axle through its center, and it turns with negligible friction. A child applies an 18.0-N force tangentially to the edge of the merry-go-round for 15.0 s. find the work done by the child?
A- 200 J
B- 20 J
C- 100 J
D- 400 J
Answer
218.7k+ views
Hint: Merry go round always moves in a circular motion, it is fixed. Now the force which is bringing it into circular motion here is the 18 N force acting tangentially and the angle between the force and the radius vector, they are perpendicular to each other. So, this force acts as a torque. We know the relationship between torque, moment of inertia and angular velocity.
Complete Step by step solution:
Force$=18N$
Radius,$r=2.4m$
Moment of inertia, \[I=2100kg{{m}^{2}}\]
Torque,
$\tau =rF \\
\Rightarrow \tau =2.4\times 18 \\
\therefore \tau =43.2Nm \\$
Also, the relationship between torque and moment of inertia and angular acceleration.
$\tau =I\alpha \\
\Rightarrow \alpha =\dfrac{\tau }{I} \\
\Rightarrow \alpha =\dfrac{43.2}{2100} \\
\therefore \alpha =0.021rad{{s}^{-2}} \\$
Now we know the time for which this force acts. For $15s$
$\alpha =\dfrac{\omega }{t} \\
\Rightarrow \omega =\alpha t \\
\Rightarrow \omega =0.021\times 15 \\
\therefore \omega =0.315rad{{s}^{-1}} \\$
Now using work energy theorem change in kinetic energy must be equal to work done. The merry go round starts from rest.
$\Rightarrow W=\Delta K \\
\Rightarrow W={{K}_{f}}-{{K}_{i}} \\
\Rightarrow W={{K}_{f}}-0 \\
\Rightarrow W={{K}_{f}} \\
\Rightarrow W=\dfrac{I{{\omega }^{2}}}{2} \\
\Rightarrow W=\dfrac{2100\times {{0.315}^{2}}}{2} \\
\therefore W=100J \\$
So, the correct option is (c)
Note: While substituting the values all the units must be in the same notation preferably in SI. If the frequency is given in round per minute, always convert it into round per second and if we multiply it by 2 \[\pi \] we get the angular frequency.
Also, torque is a vector quantity and is given by the cross product of force and perpendicular distance from the axis of rotation. In this problem both the vectors were perpendicular to each other, we have to see these all the things.
Complete Step by step solution:
Force$=18N$
Radius,$r=2.4m$
Moment of inertia, \[I=2100kg{{m}^{2}}\]
Torque,
$\tau =rF \\
\Rightarrow \tau =2.4\times 18 \\
\therefore \tau =43.2Nm \\$
Also, the relationship between torque and moment of inertia and angular acceleration.
$\tau =I\alpha \\
\Rightarrow \alpha =\dfrac{\tau }{I} \\
\Rightarrow \alpha =\dfrac{43.2}{2100} \\
\therefore \alpha =0.021rad{{s}^{-2}} \\$
Now we know the time for which this force acts. For $15s$
$\alpha =\dfrac{\omega }{t} \\
\Rightarrow \omega =\alpha t \\
\Rightarrow \omega =0.021\times 15 \\
\therefore \omega =0.315rad{{s}^{-1}} \\$
Now using work energy theorem change in kinetic energy must be equal to work done. The merry go round starts from rest.
$\Rightarrow W=\Delta K \\
\Rightarrow W={{K}_{f}}-{{K}_{i}} \\
\Rightarrow W={{K}_{f}}-0 \\
\Rightarrow W={{K}_{f}} \\
\Rightarrow W=\dfrac{I{{\omega }^{2}}}{2} \\
\Rightarrow W=\dfrac{2100\times {{0.315}^{2}}}{2} \\
\therefore W=100J \\$
So, the correct option is (c)
Note: While substituting the values all the units must be in the same notation preferably in SI. If the frequency is given in round per minute, always convert it into round per second and if we multiply it by 2 \[\pi \] we get the angular frequency.
Also, torque is a vector quantity and is given by the cross product of force and perpendicular distance from the axis of rotation. In this problem both the vectors were perpendicular to each other, we have to see these all the things.
Recently Updated Pages
Two discs which are rotating about their respective class 11 physics JEE_Main

A ladder rests against a frictionless vertical wall class 11 physics JEE_Main

Two simple pendulums of lengths 1 m and 16 m respectively class 11 physics JEE_Main

The slopes of isothermal and adiabatic curves are related class 11 physics JEE_Main

A trolly falling freely on an inclined plane as shown class 11 physics JEE_Main

The masses M1 and M2M2 M1 are released from rest Using class 11 physics JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

How to Convert a Galvanometer into an Ammeter or Voltmeter

