Answer
Verified
88.2k+ views
Hint The time period of the planet can be determined by the Kepler’s law. This law shows the relation between the time period and the semi major axis and the semi major axis shows the maximum and minimum distance of the planet from the sun, then the solution can be determined.
Useful formula
The time period of the planet is given by the Kepler’s law,
${T^2} \propto {a^3}$
Where, $T$ is the time period of the planet to move around the sun and $a$ is the semi major axis of the planet.
Complete step by step solution
Given that,
The mass of the planet is given as, $m$,
The mass of the sun is given as, $M$,
The maximum distance of the planet from the sun is given as, ${r_1}$,
The minimum distance of the planet from the sun is given as, ${r_2}$.
Now,
The time period of the planet is given by the Kepler’s law,
${T^2} \propto {a^3}\,................\left( 1 \right)$
The semi major axis of the planet is given by,
$a = \dfrac{{{r_1} + {r_2}}}{2}$,
By substituting the values of the semi major axis in the above equation (1), then the above equation (1) is written as,
${T^2} \propto {\left( {\dfrac{{{r_1} + {r_2}}}{2}} \right)^3}$
By dividing the power of the both side by $2$, then the above equation is written as,
${T^{\dfrac{2}{2}}} \propto {\left( {\dfrac{{{r_1} + {r_2}}}{2}} \right)^{\dfrac{3}{2}}}$
Then the above equation is also written as,
$T \propto {\left( {\dfrac{{{r_1} + {r_2}}}{2}} \right)^{\dfrac{3}{2}}}$
Option B is correct answer
Note The time taken by the planet to move around the sun along the elliptical path is directly proportional to the semi major axis. As the semi major axis increases, then the time period of the revolution of the planet also increases, if the semi major axis decreases, then the time period decreases.
Useful formula
The time period of the planet is given by the Kepler’s law,
${T^2} \propto {a^3}$
Where, $T$ is the time period of the planet to move around the sun and $a$ is the semi major axis of the planet.
Complete step by step solution
Given that,
The mass of the planet is given as, $m$,
The mass of the sun is given as, $M$,
The maximum distance of the planet from the sun is given as, ${r_1}$,
The minimum distance of the planet from the sun is given as, ${r_2}$.
Now,
The time period of the planet is given by the Kepler’s law,
${T^2} \propto {a^3}\,................\left( 1 \right)$
The semi major axis of the planet is given by,
$a = \dfrac{{{r_1} + {r_2}}}{2}$,
By substituting the values of the semi major axis in the above equation (1), then the above equation (1) is written as,
${T^2} \propto {\left( {\dfrac{{{r_1} + {r_2}}}{2}} \right)^3}$
By dividing the power of the both side by $2$, then the above equation is written as,
${T^{\dfrac{2}{2}}} \propto {\left( {\dfrac{{{r_1} + {r_2}}}{2}} \right)^{\dfrac{3}{2}}}$
Then the above equation is also written as,
$T \propto {\left( {\dfrac{{{r_1} + {r_2}}}{2}} \right)^{\dfrac{3}{2}}}$
Option B is correct answer
Note The time taken by the planet to move around the sun along the elliptical path is directly proportional to the semi major axis. As the semi major axis increases, then the time period of the revolution of the planet also increases, if the semi major axis decreases, then the time period decreases.
Recently Updated Pages
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main
A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main
Other Pages
The ratio of the diameters of certain air bubbles at class 11 physics JEE_Main
Derive an expression for maximum speed of a car on class 11 physics JEE_Main
A crystalline solid a Changes abruptly from solid to class 12 chemistry JEE_Main
Velocity of car at t 0 is u moves with a constant acceleration class 11 physics JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
Assertion An electron is not deflected on passing through class 12 physics JEE_Main