
When a picture drawn on a paper is seen through a slab of a transparent material of thickness $5cm$, it appears to be raised by $1.5cm$. Critical angle at the boundary of this transparent material and air is
A. ${\sin ^{ - 1}}\left( {\dfrac{2}{3}} \right)$
B. ${\sin ^{ - 1}}\left( {\dfrac{5}{7}} \right)$
C. ${\sin ^{ - 1}}\left( {\dfrac{6}{{11}}} \right)$
D. ${\sin ^{ - 1}}\left( {\dfrac{7}{{10}}} \right)$
Answer
232.8k+ views
Hint Refraction of light changes depth perception. Taking the thickness of the slab to be the real depth of the picture, calculate the refractive index of the material of the slab. Then using the formula for critical angle, obtain the solution.
Formula used
$n = \dfrac{d}{{d'}}$ where $d$ is the real depth, $d'$ is the apparent depth and $n$ is the refractive index of the medium.
$\sin {i_c} = \dfrac{1}{n}$ where ${i_c}$ is the critical angle.
Complete step by step answer
When light travels from one medium to another its direction changes. This optical phenomenon is known as the refraction of light. Now the degree up to which light bends as it changes medium is known as the refractive index. The refractive index $n$ for a given medium is given as
$n = \dfrac{c}{v}$ where $c$is the velocity of light in vacuum and $v$ is the velocity of light in the given media.
Another property of refraction is that when an object placed in a medium is viewed from another medium, its distance appears to be different than the original distance. As given in the question above, when a picture drawn on paper kept below a rectangular slab is observed from above (different medium), its depth appears to have changed. This virtual depth is known as apparent depth and the original thickness of the slab here is the real depth.
Another formula to calculate refractive index is
$n = \dfrac{d}{{d'}}$ where $d$ is the real depth and $d'$ is the apparent depth.
Now we are given, $d = 5cm$ and $d' = \left( {5 - 1.5} \right)cm = 3.5cm$
Therefore, $n = \dfrac{5}{{3.5}} = 1.428$
So, the refractive index of the material of the slab with respect to air is $1.428$.
The critical angle comes into play when light travels from denser to rarer medium. Critical angle is the angle of incidence when the angle of refraction is ${90^ \circ }$, which means that the refracted ray lies along the boundary.
The expression for critical angle is $\sin {i_c} = \dfrac{1}{n}$ where ${i_c}$ is the critical angle.
$\begin{gathered}
\sin {i_c} = \left( {\dfrac{{3.5}}{5}} \right) \\
\Rightarrow {i_c} = {\sin ^{ - 1}}\left( {\dfrac{{35}}{{50}}} \right) \\
\Rightarrow {i_c} = {\sin ^{ - 1}}\left( {\dfrac{7}{{10}}} \right) \\
\end{gathered} $
Therefore, the correct option is D.
Note Critical angle is usually defined as the largest angle of incidence at which refraction can still occur. If the angle of incidence is greater than the critical angle for that medium, then total internal reflection will take place.
Formula used
$n = \dfrac{d}{{d'}}$ where $d$ is the real depth, $d'$ is the apparent depth and $n$ is the refractive index of the medium.
$\sin {i_c} = \dfrac{1}{n}$ where ${i_c}$ is the critical angle.
Complete step by step answer
When light travels from one medium to another its direction changes. This optical phenomenon is known as the refraction of light. Now the degree up to which light bends as it changes medium is known as the refractive index. The refractive index $n$ for a given medium is given as
$n = \dfrac{c}{v}$ where $c$is the velocity of light in vacuum and $v$ is the velocity of light in the given media.
Another property of refraction is that when an object placed in a medium is viewed from another medium, its distance appears to be different than the original distance. As given in the question above, when a picture drawn on paper kept below a rectangular slab is observed from above (different medium), its depth appears to have changed. This virtual depth is known as apparent depth and the original thickness of the slab here is the real depth.
Another formula to calculate refractive index is
$n = \dfrac{d}{{d'}}$ where $d$ is the real depth and $d'$ is the apparent depth.
Now we are given, $d = 5cm$ and $d' = \left( {5 - 1.5} \right)cm = 3.5cm$
Therefore, $n = \dfrac{5}{{3.5}} = 1.428$
So, the refractive index of the material of the slab with respect to air is $1.428$.
The critical angle comes into play when light travels from denser to rarer medium. Critical angle is the angle of incidence when the angle of refraction is ${90^ \circ }$, which means that the refracted ray lies along the boundary.
The expression for critical angle is $\sin {i_c} = \dfrac{1}{n}$ where ${i_c}$ is the critical angle.
$\begin{gathered}
\sin {i_c} = \left( {\dfrac{{3.5}}{5}} \right) \\
\Rightarrow {i_c} = {\sin ^{ - 1}}\left( {\dfrac{{35}}{{50}}} \right) \\
\Rightarrow {i_c} = {\sin ^{ - 1}}\left( {\dfrac{7}{{10}}} \right) \\
\end{gathered} $
Therefore, the correct option is D.
Note Critical angle is usually defined as the largest angle of incidence at which refraction can still occur. If the angle of incidence is greater than the critical angle for that medium, then total internal reflection will take place.
Recently Updated Pages
Circuit Switching vs Packet Switching: Key Differences Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Understanding Uniform Acceleration in Physics

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

