Answer
Verified
81.6k+ views
Hint: In the question, the time taken by the person to reach the top is given in both cases, when the escalator is stationary with respect to the ground and when the person is stationary with respect to the escalator. The time taken when both escalator and person move at the same time can be calculated by adding their velocities.
Complete Step by step solution:
Let the-
Distance covered by the man be s.
The velocity of the person with respect to the escalator be ${v_{pe}}$
The velocity of the person with respect to the ground be ${v_{pg}}$
The velocity of the escalator with respect to the ground be ${v_{eg}}$
Then the velocity of the person with respect to the escalator can be given by,
${v_{pe}} = {v_{pg}} - {v_{eg}}$
In the case where the escalator is moving and the person is standing, the velocity
${v_{pe}}$ becomes zero because there is no relative motion between the person and the escalator.
Here, ${v_{pg}} = {v_{eg}}$
The time taken is $1\min $, writing it in seconds we have ${t_1} = 60\sec $
Then, the velocity of the escalator with respect to ground is given by-
${v_{eg}} = \dfrac{s}{{60}}$
(As velocity is given by displacement over time taken)
In the second case, when the escalator is stopped and the person walks up, the velocity of the escalator with respect to the ground becomes zero.
We know that${v_{eg}} = 0$.
Therefore we have-
${v_{pg}} = {v_{pe}}$
Given that the time taken to reach the top this time is $3\min $or
${t_2} = 3 \times 60 = 180\sec $
The velocity of the person with respect to the escalator is,
${v_{pe}} = \dfrac{s}{{180}}$
In the third case, when both the escalator and the person move with their own velocities, they can be represented by-
${v_{pe}} = {v_{pg}} - {v_{eg}}$
They can be written as-
$\dfrac{s}{{{t_2}}} = \dfrac{s}{{{t_3}}} - \dfrac{s}{{{t_1}}}$
$ \Rightarrow \dfrac{1}{{{t_3}}} = \dfrac{1}{{{t_1}}} + \dfrac{1}{{{t_2}}}$
On putting the values of ${t_1}$and ${t_2}$in the equation,
$\dfrac{1}{{{t_3}}} = \dfrac{1}{{60}} + \dfrac{1}{{180}}$
$\dfrac{1}{{{t_3}}} = \dfrac{{3 + 1}}{{180}} = \dfrac{4}{{180}} = \dfrac{1}{{45}}$
Therefore we can say that, ${t_3} = 45\sec $
Thus it takes the person $45$ seconds to reach the top when both the escalator and the person move together.
Option (B) is correct.
Note: To represent relative velocity, we write two subscript letters below $v$, where the first letter defines the object’s velocity while the second represents the object with respect to whom this velocity is defined. For example, ${v_{AB}}$ will be pronounced as velocity of $A$ with respect to $B$ . It is defined as ${v_{AB}} = {v_A} - {v_B}$ , where ${v_A}$ and ${v_B}$ are the absolute velocities.
Complete Step by step solution:
Let the-
Distance covered by the man be s.
The velocity of the person with respect to the escalator be ${v_{pe}}$
The velocity of the person with respect to the ground be ${v_{pg}}$
The velocity of the escalator with respect to the ground be ${v_{eg}}$
Then the velocity of the person with respect to the escalator can be given by,
${v_{pe}} = {v_{pg}} - {v_{eg}}$
In the case where the escalator is moving and the person is standing, the velocity
${v_{pe}}$ becomes zero because there is no relative motion between the person and the escalator.
Here, ${v_{pg}} = {v_{eg}}$
The time taken is $1\min $, writing it in seconds we have ${t_1} = 60\sec $
Then, the velocity of the escalator with respect to ground is given by-
${v_{eg}} = \dfrac{s}{{60}}$
(As velocity is given by displacement over time taken)
In the second case, when the escalator is stopped and the person walks up, the velocity of the escalator with respect to the ground becomes zero.
We know that${v_{eg}} = 0$.
Therefore we have-
${v_{pg}} = {v_{pe}}$
Given that the time taken to reach the top this time is $3\min $or
${t_2} = 3 \times 60 = 180\sec $
The velocity of the person with respect to the escalator is,
${v_{pe}} = \dfrac{s}{{180}}$
In the third case, when both the escalator and the person move with their own velocities, they can be represented by-
${v_{pe}} = {v_{pg}} - {v_{eg}}$
They can be written as-
$\dfrac{s}{{{t_2}}} = \dfrac{s}{{{t_3}}} - \dfrac{s}{{{t_1}}}$
$ \Rightarrow \dfrac{1}{{{t_3}}} = \dfrac{1}{{{t_1}}} + \dfrac{1}{{{t_2}}}$
On putting the values of ${t_1}$and ${t_2}$in the equation,
$\dfrac{1}{{{t_3}}} = \dfrac{1}{{60}} + \dfrac{1}{{180}}$
$\dfrac{1}{{{t_3}}} = \dfrac{{3 + 1}}{{180}} = \dfrac{4}{{180}} = \dfrac{1}{{45}}$
Therefore we can say that, ${t_3} = 45\sec $
Thus it takes the person $45$ seconds to reach the top when both the escalator and the person move together.
Option (B) is correct.
Note: To represent relative velocity, we write two subscript letters below $v$, where the first letter defines the object’s velocity while the second represents the object with respect to whom this velocity is defined. For example, ${v_{AB}}$ will be pronounced as velocity of $A$ with respect to $B$ . It is defined as ${v_{AB}} = {v_A} - {v_B}$ , where ${v_A}$ and ${v_B}$ are the absolute velocities.
Recently Updated Pages
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main
A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main