
A particle when thrown. moves such that it passes from same height at $2$ and $10s$, the height is:
A. $g$
B. $2g$
C. $5g$
D. $10g$
Answer
161.1k+ views
Hint: In order to solve this question, we will find the distance covered by both the bodies in a given interval of time and then we will solve for the given same height and here we will use the general Newton’s equations of motion.
Formula used:
Equation of motion is
$S = ut + \dfrac{1}{2}a{t^2}$
where,
S is the distance covered by the body
u is the initial velocity of the body
a is the acceleration of the body and when body motion is under effect of gravity then $a = g$ called acceleration due to gravity.
t is the time taken by the body.
Complete step by step solution:
According to the question, let us suppose the height is h at which particle passes twice at the time of $t = 2,t = 10s$ let its initial velocity be u and acceleration due to gravity is $g$ and due to upward motion acceleration of the body will be $a = - g$. So using equation of motion $S = ut + \dfrac{1}{2}a{t^2}$ we get, at $t = 2s$
$h = u(2) - \dfrac{1}{2}g{(2)^2} \\
\Rightarrow h = 2u - 2g \to (i) \\ $
At, $t = 10s$ we have,
$h = u(10) - \dfrac{1}{2}g{(10)^2} \\
\Rightarrow h = 10u - 50g \to (ii) \\ $
Now, applying the operation five time the equation (i) and subtract the equation (ii) as $5(i) - (ii)$ we get
$5h - h = 40g \\
\Rightarrow h = 10g \\ $
So, the height at which the particle passes twice in a given period of time is $10g$.
Hence, the correct answer is option D.
Note: While solving such problems, don’t make the mistake of using the sign used for acceleration due to gravity because as per standard sign conventions we use acceleration due to gravity as negative for upward motion while positive for downward motion.
Formula used:
Equation of motion is
$S = ut + \dfrac{1}{2}a{t^2}$
where,
S is the distance covered by the body
u is the initial velocity of the body
a is the acceleration of the body and when body motion is under effect of gravity then $a = g$ called acceleration due to gravity.
t is the time taken by the body.
Complete step by step solution:
According to the question, let us suppose the height is h at which particle passes twice at the time of $t = 2,t = 10s$ let its initial velocity be u and acceleration due to gravity is $g$ and due to upward motion acceleration of the body will be $a = - g$. So using equation of motion $S = ut + \dfrac{1}{2}a{t^2}$ we get, at $t = 2s$
$h = u(2) - \dfrac{1}{2}g{(2)^2} \\
\Rightarrow h = 2u - 2g \to (i) \\ $
At, $t = 10s$ we have,
$h = u(10) - \dfrac{1}{2}g{(10)^2} \\
\Rightarrow h = 10u - 50g \to (ii) \\ $
Now, applying the operation five time the equation (i) and subtract the equation (ii) as $5(i) - (ii)$ we get
$5h - h = 40g \\
\Rightarrow h = 10g \\ $
So, the height at which the particle passes twice in a given period of time is $10g$.
Hence, the correct answer is option D.
Note: While solving such problems, don’t make the mistake of using the sign used for acceleration due to gravity because as per standard sign conventions we use acceleration due to gravity as negative for upward motion while positive for downward motion.
Recently Updated Pages
A steel rail of length 5m and area of cross section class 11 physics JEE_Main

At which height is gravity zero class 11 physics JEE_Main

A nucleus of mass m + Delta m is at rest and decays class 11 physics JEE_MAIN

A wave is travelling along a string At an instant the class 11 physics JEE_Main

The length of a conductor is halved its conductivity class 11 physics JEE_Main

Two billiard balls of the same size and mass are in class 11 physics JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

Uniform Acceleration

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
