
A particle performs simple harmonic motion with amplitude A. Its speed is trebled at the instant that it is at a distance $\dfrac{{2A}}{3}$ from equilibrium position. The new amplitude of the motion is:
A) $\dfrac{A}{3}\sqrt {41} $
B) $3A$
C) $A\sqrt 3 $
D) $\dfrac{{7A}}{3}$
Answer
191.4k+ views
Hint: Recall that the simple harmonic motion is defined as the motion in which the restoring force is directly proportional to the displacement of the body from its mean position. The direction of the restoring force is towards its mean position.
Complete step by step solution:
The velocity of a particle executing SHM at any instant, is the time rate of change of its displacement at that instant.
$v = \omega \sqrt {{A^2} - {x^2}} $
Where $\omega $is the angular frequency, A is the amplitude and x is the displacement of the particle.
Suppose that the new amplitude of the motion be ‘A’.
If A is the initial amplitude and$\omega $is the angular frequency. Initial velocity of a particle performs SHM,
$\Rightarrow {v^2} = {\omega ^2}[{A^2} - {(\dfrac{{2A}}{3})^2}]$---(i)
The final velocity of the particle is given by
$\Rightarrow {(3v)^2} = {\omega ^2}[A{'^2} - {(\dfrac{{2A}}{3})^2}]$---(ii)
The ratio of equation (i) and (ii) is written as,
$\Rightarrow \dfrac{{{v^2}}}{{{{(3v)}^2}}} = \dfrac{{{A^2} - \dfrac{{4{A^2}}}{9}}}{{A{'^2} - \dfrac{{4{A^2}}}{9}}}$
\[ \Rightarrow \dfrac{1}{9} = \dfrac{{\dfrac{{9{A^2} - 4{A^2}}}{9}}}{{A{'^2} - \dfrac{{4{A^2}}}{9}}}\]
$ \Rightarrow \dfrac{1}{9} = \dfrac{{\dfrac{{5{A^2}}}{9}}}{{A{'^2} - \dfrac{{4{A^2}}}{9}}}$
\[ \Rightarrow \dfrac{1}{9}(A{'^2} - \dfrac{{4{A^2}}}{9}) = \dfrac{{5{A^2}}}{9}\]
$ \Rightarrow {A' ^2} - \dfrac{{4{A^2}}}{9} = \dfrac{{5{A^2}}}{9} \times 9$
$ \Rightarrow {A' ^2} = 5{A^2} + \dfrac{{4{A^2}}}{9}$
$\Rightarrow {A' ^2} = \dfrac{{45{A^2} + 4{A^2}}}{9}$
$\Rightarrow {A’ ^2} = \dfrac{{49{A^2}}}{9}$
$\Rightarrow A' = \dfrac{{7A}}{3}$
The new amplitude of the motion is $\dfrac{{7A}}{3}$.
Option D is the right answer.
Note: It is important to note that all the simple harmonic motions are periodic but all periodic motions are not simple harmonic. This is because a simple harmonic motion is a type of periodic motion in which there is to and fro movement of an object about its mean position. But the mean position of the object can be different. But periodic motion is a type of motion which repeats itself after fixed intervals of time. For example the motion of Earth around the sun is a type of periodic motion as it repeats after a fixed interval of time.
Complete step by step solution:
The velocity of a particle executing SHM at any instant, is the time rate of change of its displacement at that instant.
$v = \omega \sqrt {{A^2} - {x^2}} $
Where $\omega $is the angular frequency, A is the amplitude and x is the displacement of the particle.
Suppose that the new amplitude of the motion be ‘A’.
If A is the initial amplitude and$\omega $is the angular frequency. Initial velocity of a particle performs SHM,
$\Rightarrow {v^2} = {\omega ^2}[{A^2} - {(\dfrac{{2A}}{3})^2}]$---(i)
The final velocity of the particle is given by
$\Rightarrow {(3v)^2} = {\omega ^2}[A{'^2} - {(\dfrac{{2A}}{3})^2}]$---(ii)
The ratio of equation (i) and (ii) is written as,
$\Rightarrow \dfrac{{{v^2}}}{{{{(3v)}^2}}} = \dfrac{{{A^2} - \dfrac{{4{A^2}}}{9}}}{{A{'^2} - \dfrac{{4{A^2}}}{9}}}$
\[ \Rightarrow \dfrac{1}{9} = \dfrac{{\dfrac{{9{A^2} - 4{A^2}}}{9}}}{{A{'^2} - \dfrac{{4{A^2}}}{9}}}\]
$ \Rightarrow \dfrac{1}{9} = \dfrac{{\dfrac{{5{A^2}}}{9}}}{{A{'^2} - \dfrac{{4{A^2}}}{9}}}$
\[ \Rightarrow \dfrac{1}{9}(A{'^2} - \dfrac{{4{A^2}}}{9}) = \dfrac{{5{A^2}}}{9}\]
$ \Rightarrow {A' ^2} - \dfrac{{4{A^2}}}{9} = \dfrac{{5{A^2}}}{9} \times 9$
$ \Rightarrow {A' ^2} = 5{A^2} + \dfrac{{4{A^2}}}{9}$
$\Rightarrow {A' ^2} = \dfrac{{45{A^2} + 4{A^2}}}{9}$
$\Rightarrow {A’ ^2} = \dfrac{{49{A^2}}}{9}$
$\Rightarrow A' = \dfrac{{7A}}{3}$
The new amplitude of the motion is $\dfrac{{7A}}{3}$.
Option D is the right answer.
Note: It is important to note that all the simple harmonic motions are periodic but all periodic motions are not simple harmonic. This is because a simple harmonic motion is a type of periodic motion in which there is to and fro movement of an object about its mean position. But the mean position of the object can be different. But periodic motion is a type of motion which repeats itself after fixed intervals of time. For example the motion of Earth around the sun is a type of periodic motion as it repeats after a fixed interval of time.
Recently Updated Pages
Mass vs Weight: Key Differences, Units & Examples Explained

Uniform Acceleration: Definition, Equations & Graphs for JEE/NEET

Area of an Octagon Formula - Explanation, and FAQs

Difference Between Vapor and Gas: JEE Main 2026

Carbon Dioxide Formula - Definition, Uses and FAQs

Absolute Pressure Formula - Explanation, and FAQs

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Equation of Trajectory in Projectile Motion: Derivation & Proof

Atomic Structure: Definition, Models, and Examples

Angle of Deviation in a Prism – Formula, Diagram & Applications

Hybridisation in Chemistry – Concept, Types & Applications

Collision: Meaning, Types & Examples in Physics

Other Pages
NCERT Solutions For Class 11 Physics Chapter 2 Motion In A Straight Line - 2025-26

NCERT Solutions For Class 11 Physics Chapter 1 Units and Measurements - 2025-26

NCERT Solutions For Class 11 Physics Chapter 3 Motion In A Plane - 2025-26

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Physics Chapter 5 Work Energy And Power - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26
