
A particle of mass \[m\] rotating along a circular path of the radius \[r\] with uniform speed. Its angular momentum about the axis of rotation is \[L\], the centripetal force acting on the particle is:
A) \[\dfrac{{{L}^{2}}}{m{{r}^{3}}}\]
B) \[\dfrac{{{L}^{2}}}{mr}\]
C) \[\dfrac{L}{m{{r}^{2}}}\]
D) \[\dfrac{{{L}^{2}}m}{r}\]
E) \[\dfrac{Lm}{{{r}^{2}}}\]
Answer
522.7k+ views
Hint: Angular momentum in rotational motion is equivalent to linear momentum in translation motion. Angular momentum is a vector quantity that is a measure of the rotational momentum of a rotating body. The angular momentum is directed along the rotation axis.
Formula Used:
\[L=I\omega \], \[I=m{{r}^{2}}\], \[\omega =\dfrac{v}{r}\] and \[F=\dfrac{m{{v}^{2}}}{r}\]
Complete step by step solution:
As stated in the hint, angular momentum is equivalent to linear momentum. We know that linear momentum is equal to the product of the mass of the body and its linear velocity. The equivalent of mass in rotational motion is the Moment of Inertia and the equivalent of linear velocity in rotational motion is angular velocity.
Mathematically, we can say that \[L=I\omega \] where \[L\] refers to the angular momentum of the body, \[I\] is the Moment of Inertia of the body and \[\omega \] is the angular velocity.
The Moment of Inertia \[I\] for a particle of mass \[m\] is given as \[I=m{{r}^{2}}\] and the angular velocity \[\omega \] of the body is given as \[\omega =\dfrac{v}{r}\] where \[v\] is the uniform speed of motion of the particle and \[r\] is the radius of the circular path.
Substituting the values of the moment of inertia and the angular velocity in the expression for angular momentum, we get
\[\begin{align}
& L=I\times \omega =m{{r}^{2}}\times \dfrac{v}{r} \\
& \Rightarrow L=mvr \\
& \Rightarrow v=\dfrac{L}{mr} \\
\end{align}\]
Now centripetal force \[F\] acting on a body in a circular motion is given as \[F=\dfrac{m{{v}^{2}}}{r}\]
Substituting the value of velocity obtained in terms of angular momentum, we get
\[\begin{align}
& F=\dfrac{m{{v}^{2}}}{r} \\
& \Rightarrow F=\dfrac{m}{r}\times {{v}^{2}}=\dfrac{m}{r}\times {{\left( \dfrac{L}{mr} \right)}^{2}} \\
& \Rightarrow F=\dfrac{m{{L}^{2}}}{r\times {{m}^{2}}\times {{r}^{2}}} \\
& \Rightarrow F=\dfrac{{{L}^{2}}}{m{{r}^{3}}} \\
\end{align}\]
Hence option (A) is the correct option.
Note:An alternative method of approaching this problem is as follows.
Angular momentum is also equivalent to the torque of linear momentum or the moment of momentum. Now the torque of linear momentum will be the product of linear momentum and the distance from the axis of rotation, that is \[L=mvr\]. Hence we can skip the angular velocity part.
Formula Used:
\[L=I\omega \], \[I=m{{r}^{2}}\], \[\omega =\dfrac{v}{r}\] and \[F=\dfrac{m{{v}^{2}}}{r}\]
Complete step by step solution:
As stated in the hint, angular momentum is equivalent to linear momentum. We know that linear momentum is equal to the product of the mass of the body and its linear velocity. The equivalent of mass in rotational motion is the Moment of Inertia and the equivalent of linear velocity in rotational motion is angular velocity.
Mathematically, we can say that \[L=I\omega \] where \[L\] refers to the angular momentum of the body, \[I\] is the Moment of Inertia of the body and \[\omega \] is the angular velocity.
The Moment of Inertia \[I\] for a particle of mass \[m\] is given as \[I=m{{r}^{2}}\] and the angular velocity \[\omega \] of the body is given as \[\omega =\dfrac{v}{r}\] where \[v\] is the uniform speed of motion of the particle and \[r\] is the radius of the circular path.
Substituting the values of the moment of inertia and the angular velocity in the expression for angular momentum, we get
\[\begin{align}
& L=I\times \omega =m{{r}^{2}}\times \dfrac{v}{r} \\
& \Rightarrow L=mvr \\
& \Rightarrow v=\dfrac{L}{mr} \\
\end{align}\]
Now centripetal force \[F\] acting on a body in a circular motion is given as \[F=\dfrac{m{{v}^{2}}}{r}\]
Substituting the value of velocity obtained in terms of angular momentum, we get
\[\begin{align}
& F=\dfrac{m{{v}^{2}}}{r} \\
& \Rightarrow F=\dfrac{m}{r}\times {{v}^{2}}=\dfrac{m}{r}\times {{\left( \dfrac{L}{mr} \right)}^{2}} \\
& \Rightarrow F=\dfrac{m{{L}^{2}}}{r\times {{m}^{2}}\times {{r}^{2}}} \\
& \Rightarrow F=\dfrac{{{L}^{2}}}{m{{r}^{3}}} \\
\end{align}\]
Hence option (A) is the correct option.
Note:An alternative method of approaching this problem is as follows.
Angular momentum is also equivalent to the torque of linear momentum or the moment of momentum. Now the torque of linear momentum will be the product of linear momentum and the distance from the axis of rotation, that is \[L=mvr\]. Hence we can skip the angular velocity part.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Uniform Acceleration in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

