
A particle of mass \[m\] rotating along a circular path of the radius \[r\] with uniform speed. Its angular momentum about the axis of rotation is \[L\], the centripetal force acting on the particle is:
A) \[\dfrac{{{L}^{2}}}{m{{r}^{3}}}\]
B) \[\dfrac{{{L}^{2}}}{mr}\]
C) \[\dfrac{L}{m{{r}^{2}}}\]
D) \[\dfrac{{{L}^{2}}m}{r}\]
E) \[\dfrac{Lm}{{{r}^{2}}}\]
Answer
505.9k+ views
Hint: Angular momentum in rotational motion is equivalent to linear momentum in translation motion. Angular momentum is a vector quantity that is a measure of the rotational momentum of a rotating body. The angular momentum is directed along the rotation axis.
Formula Used:
\[L=I\omega \], \[I=m{{r}^{2}}\], \[\omega =\dfrac{v}{r}\] and \[F=\dfrac{m{{v}^{2}}}{r}\]
Complete step by step solution:
As stated in the hint, angular momentum is equivalent to linear momentum. We know that linear momentum is equal to the product of the mass of the body and its linear velocity. The equivalent of mass in rotational motion is the Moment of Inertia and the equivalent of linear velocity in rotational motion is angular velocity.
Mathematically, we can say that \[L=I\omega \] where \[L\] refers to the angular momentum of the body, \[I\] is the Moment of Inertia of the body and \[\omega \] is the angular velocity.
The Moment of Inertia \[I\] for a particle of mass \[m\] is given as \[I=m{{r}^{2}}\] and the angular velocity \[\omega \] of the body is given as \[\omega =\dfrac{v}{r}\] where \[v\] is the uniform speed of motion of the particle and \[r\] is the radius of the circular path.
Substituting the values of the moment of inertia and the angular velocity in the expression for angular momentum, we get
\[\begin{align}
& L=I\times \omega =m{{r}^{2}}\times \dfrac{v}{r} \\
& \Rightarrow L=mvr \\
& \Rightarrow v=\dfrac{L}{mr} \\
\end{align}\]
Now centripetal force \[F\] acting on a body in a circular motion is given as \[F=\dfrac{m{{v}^{2}}}{r}\]
Substituting the value of velocity obtained in terms of angular momentum, we get
\[\begin{align}
& F=\dfrac{m{{v}^{2}}}{r} \\
& \Rightarrow F=\dfrac{m}{r}\times {{v}^{2}}=\dfrac{m}{r}\times {{\left( \dfrac{L}{mr} \right)}^{2}} \\
& \Rightarrow F=\dfrac{m{{L}^{2}}}{r\times {{m}^{2}}\times {{r}^{2}}} \\
& \Rightarrow F=\dfrac{{{L}^{2}}}{m{{r}^{3}}} \\
\end{align}\]
Hence option (A) is the correct option.
Note:An alternative method of approaching this problem is as follows.
Angular momentum is also equivalent to the torque of linear momentum or the moment of momentum. Now the torque of linear momentum will be the product of linear momentum and the distance from the axis of rotation, that is \[L=mvr\]. Hence we can skip the angular velocity part.
Formula Used:
\[L=I\omega \], \[I=m{{r}^{2}}\], \[\omega =\dfrac{v}{r}\] and \[F=\dfrac{m{{v}^{2}}}{r}\]
Complete step by step solution:
As stated in the hint, angular momentum is equivalent to linear momentum. We know that linear momentum is equal to the product of the mass of the body and its linear velocity. The equivalent of mass in rotational motion is the Moment of Inertia and the equivalent of linear velocity in rotational motion is angular velocity.
Mathematically, we can say that \[L=I\omega \] where \[L\] refers to the angular momentum of the body, \[I\] is the Moment of Inertia of the body and \[\omega \] is the angular velocity.
The Moment of Inertia \[I\] for a particle of mass \[m\] is given as \[I=m{{r}^{2}}\] and the angular velocity \[\omega \] of the body is given as \[\omega =\dfrac{v}{r}\] where \[v\] is the uniform speed of motion of the particle and \[r\] is the radius of the circular path.
Substituting the values of the moment of inertia and the angular velocity in the expression for angular momentum, we get
\[\begin{align}
& L=I\times \omega =m{{r}^{2}}\times \dfrac{v}{r} \\
& \Rightarrow L=mvr \\
& \Rightarrow v=\dfrac{L}{mr} \\
\end{align}\]
Now centripetal force \[F\] acting on a body in a circular motion is given as \[F=\dfrac{m{{v}^{2}}}{r}\]
Substituting the value of velocity obtained in terms of angular momentum, we get
\[\begin{align}
& F=\dfrac{m{{v}^{2}}}{r} \\
& \Rightarrow F=\dfrac{m}{r}\times {{v}^{2}}=\dfrac{m}{r}\times {{\left( \dfrac{L}{mr} \right)}^{2}} \\
& \Rightarrow F=\dfrac{m{{L}^{2}}}{r\times {{m}^{2}}\times {{r}^{2}}} \\
& \Rightarrow F=\dfrac{{{L}^{2}}}{m{{r}^{3}}} \\
\end{align}\]
Hence option (A) is the correct option.
Note:An alternative method of approaching this problem is as follows.
Angular momentum is also equivalent to the torque of linear momentum or the moment of momentum. Now the torque of linear momentum will be the product of linear momentum and the distance from the axis of rotation, that is \[L=mvr\]. Hence we can skip the angular velocity part.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Atomic Structure: Definition, Models, and Examples

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Geostationary and Geosynchronous Satellites Explained

Other Pages
Inertial and Non-Inertial Frame of Reference Explained

Clemmensen and Wolff Kishner Reductions Explained for JEE & NEET

JEE Main 2023 January 29th Shift 2 Physics Question Paper with Answer Keys and Solutions

Current Loop as a Magnetic Dipole: Concept, Derivation, and Examples

Two identical balls are projected one vertically up class 11 physics JEE_MAIN

NCERT Solutions For Class 11 Physics Chapter 13 Oscillations - 2025-26

