
A particle moves in the x-y plane according to rule \[x = a\cos \omega t\] and \[y = a\sin \omega t\]. The particle follows
(A) An elliptical path
(B) A circular path
(C) A parabolic path
(D) A straight line path inclined equally to x and y axes.
Answer
169.5k+ views
Hint: The equations given are parametric equations of a particular shape. We need to compare the equation with the parametric equations of the given options.
Formula used: In this solution we will be using the following formulae;
\[\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1\] Cartesian equation of an ellipse, with semi major axis \[a\] and semi minor axis \[b\]. \[\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{a^2}}} = 1\] Cartesian equation of a circle, with radius \[a\].
\[x = a\cos \omega t\] and \[y = b\sin \theta \] this is the parametric equation of an ellipse. \[x = a\cos \theta \] and \[y = a\sin \theta \] this is the parametric equation of a circle
Complete Step-by-Step Solution:
A particle is said to move in the x y plane according to the rule
\[x = a\cos \omega t\] and also \[y = a\sin \omega t\]
This is a parametric equation. We shall compare it to the parametric equation of each of the options.
Option A is given an ellipse. The parametric equation of an ellipse centred at the origin is given as
\[x = a\cos \omega t\] and \[y = b\sin \theta \] where \[a\] is the semi major axis and \[b\] is the semi minor axis. (this can be interchanged, depending on the orientation of the ellipse)
Hence, by observation, we see that this is not the equation is not that of an ellipse.
Option B is given as a circle. The parametric equation of a circle is given as
\[x = a\cos \theta \] and \[y = a\sin \theta \] where \[a\] is the radius.
Hence by observation, we can see that the equation above is exactly like the equation of a circle where \[\theta = \omega t\]
Hence, the particle traces out a circular path
Thus, the correct option is B.
Note: Alternatively, the equation can be converted to Cartesian form or standard form. This can be done as follows,
Squaring both x and y equation, we have
\[{x^2} = {\left( {a\cos \omega t} \right)^2} = {a^2}{\cos ^2}\omega t\], and for y coordinate,
\[{y^2} = {\left( {a\sin \omega t} \right)^2} = {a^2}{\sin ^2}\omega t\]
Now, we add the two equations together, such that we get
\[{x^2} + {y^2} = {a^2}{\cos ^2}\omega t + {a^2}{\sin ^2}\omega t\]
By factorising out \[{a^2}\], we get
\[{x^2} + {y^2} = {a^2}\left( {{{\cos }^2}\omega t + {{\sin }^2}\omega t} \right)\]
Then, since\[{\cos ^2}\omega t + {\sin ^2}\omega t = 1\], we have
\[{x^2} + {y^2} = {a^2}\] or
\[\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{a^2}}} = 1\]
And this is precisely the Cartesian equation of a circle.
An ellipse would have been,
\[\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1\]
Formula used: In this solution we will be using the following formulae;
\[\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1\] Cartesian equation of an ellipse, with semi major axis \[a\] and semi minor axis \[b\]. \[\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{a^2}}} = 1\] Cartesian equation of a circle, with radius \[a\].
\[x = a\cos \omega t\] and \[y = b\sin \theta \] this is the parametric equation of an ellipse. \[x = a\cos \theta \] and \[y = a\sin \theta \] this is the parametric equation of a circle
Complete Step-by-Step Solution:
A particle is said to move in the x y plane according to the rule
\[x = a\cos \omega t\] and also \[y = a\sin \omega t\]
This is a parametric equation. We shall compare it to the parametric equation of each of the options.
Option A is given an ellipse. The parametric equation of an ellipse centred at the origin is given as
\[x = a\cos \omega t\] and \[y = b\sin \theta \] where \[a\] is the semi major axis and \[b\] is the semi minor axis. (this can be interchanged, depending on the orientation of the ellipse)
Hence, by observation, we see that this is not the equation is not that of an ellipse.
Option B is given as a circle. The parametric equation of a circle is given as
\[x = a\cos \theta \] and \[y = a\sin \theta \] where \[a\] is the radius.
Hence by observation, we can see that the equation above is exactly like the equation of a circle where \[\theta = \omega t\]
Hence, the particle traces out a circular path
Thus, the correct option is B.
Note: Alternatively, the equation can be converted to Cartesian form or standard form. This can be done as follows,
Squaring both x and y equation, we have
\[{x^2} = {\left( {a\cos \omega t} \right)^2} = {a^2}{\cos ^2}\omega t\], and for y coordinate,
\[{y^2} = {\left( {a\sin \omega t} \right)^2} = {a^2}{\sin ^2}\omega t\]
Now, we add the two equations together, such that we get
\[{x^2} + {y^2} = {a^2}{\cos ^2}\omega t + {a^2}{\sin ^2}\omega t\]
By factorising out \[{a^2}\], we get
\[{x^2} + {y^2} = {a^2}\left( {{{\cos }^2}\omega t + {{\sin }^2}\omega t} \right)\]
Then, since\[{\cos ^2}\omega t + {\sin ^2}\omega t = 1\], we have
\[{x^2} + {y^2} = {a^2}\] or
\[\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{a^2}}} = 1\]
And this is precisely the Cartesian equation of a circle.
An ellipse would have been,
\[\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1\]
Recently Updated Pages
Preparation of Hydrogen Gas: Methods & Uses Explained

Polymers in Chemistry: Definition, Types, Examples & Uses

P Block Elements: Definition, Groups, Trends & Properties for JEE/NEET

Order of Reaction in Chemistry: Definition, Formula & Examples

Molarity vs Molality: Definitions, Formulas & Key Differences

Hydrocarbons: Types, Formula, Structure & Examples Explained

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Uniform Acceleration

Displacement-Time Graph and Velocity-Time Graph for JEE

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Instantaneous Velocity - Formula based Examples for JEE

Other Pages
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement
