
A particle moves in the x-y plane according to rule \[x = a\cos \omega t\] and \[y = a\sin \omega t\]. The particle follows
(A) An elliptical path
(B) A circular path
(C) A parabolic path
(D) A straight line path inclined equally to x and y axes.
Answer
216.3k+ views
Hint: The equations given are parametric equations of a particular shape. We need to compare the equation with the parametric equations of the given options.
Formula used: In this solution we will be using the following formulae;
\[\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1\] Cartesian equation of an ellipse, with semi major axis \[a\] and semi minor axis \[b\]. \[\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{a^2}}} = 1\] Cartesian equation of a circle, with radius \[a\].
\[x = a\cos \omega t\] and \[y = b\sin \theta \] this is the parametric equation of an ellipse. \[x = a\cos \theta \] and \[y = a\sin \theta \] this is the parametric equation of a circle
Complete Step-by-Step Solution:
A particle is said to move in the x y plane according to the rule
\[x = a\cos \omega t\] and also \[y = a\sin \omega t\]
This is a parametric equation. We shall compare it to the parametric equation of each of the options.
Option A is given an ellipse. The parametric equation of an ellipse centred at the origin is given as
\[x = a\cos \omega t\] and \[y = b\sin \theta \] where \[a\] is the semi major axis and \[b\] is the semi minor axis. (this can be interchanged, depending on the orientation of the ellipse)
Hence, by observation, we see that this is not the equation is not that of an ellipse.
Option B is given as a circle. The parametric equation of a circle is given as
\[x = a\cos \theta \] and \[y = a\sin \theta \] where \[a\] is the radius.
Hence by observation, we can see that the equation above is exactly like the equation of a circle where \[\theta = \omega t\]
Hence, the particle traces out a circular path
Thus, the correct option is B.
Note: Alternatively, the equation can be converted to Cartesian form or standard form. This can be done as follows,
Squaring both x and y equation, we have
\[{x^2} = {\left( {a\cos \omega t} \right)^2} = {a^2}{\cos ^2}\omega t\], and for y coordinate,
\[{y^2} = {\left( {a\sin \omega t} \right)^2} = {a^2}{\sin ^2}\omega t\]
Now, we add the two equations together, such that we get
\[{x^2} + {y^2} = {a^2}{\cos ^2}\omega t + {a^2}{\sin ^2}\omega t\]
By factorising out \[{a^2}\], we get
\[{x^2} + {y^2} = {a^2}\left( {{{\cos }^2}\omega t + {{\sin }^2}\omega t} \right)\]
Then, since\[{\cos ^2}\omega t + {\sin ^2}\omega t = 1\], we have
\[{x^2} + {y^2} = {a^2}\] or
\[\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{a^2}}} = 1\]
And this is precisely the Cartesian equation of a circle.
An ellipse would have been,
\[\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1\]
Formula used: In this solution we will be using the following formulae;
\[\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1\] Cartesian equation of an ellipse, with semi major axis \[a\] and semi minor axis \[b\]. \[\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{a^2}}} = 1\] Cartesian equation of a circle, with radius \[a\].
\[x = a\cos \omega t\] and \[y = b\sin \theta \] this is the parametric equation of an ellipse. \[x = a\cos \theta \] and \[y = a\sin \theta \] this is the parametric equation of a circle
Complete Step-by-Step Solution:
A particle is said to move in the x y plane according to the rule
\[x = a\cos \omega t\] and also \[y = a\sin \omega t\]
This is a parametric equation. We shall compare it to the parametric equation of each of the options.
Option A is given an ellipse. The parametric equation of an ellipse centred at the origin is given as
\[x = a\cos \omega t\] and \[y = b\sin \theta \] where \[a\] is the semi major axis and \[b\] is the semi minor axis. (this can be interchanged, depending on the orientation of the ellipse)
Hence, by observation, we see that this is not the equation is not that of an ellipse.
Option B is given as a circle. The parametric equation of a circle is given as
\[x = a\cos \theta \] and \[y = a\sin \theta \] where \[a\] is the radius.
Hence by observation, we can see that the equation above is exactly like the equation of a circle where \[\theta = \omega t\]
Hence, the particle traces out a circular path
Thus, the correct option is B.
Note: Alternatively, the equation can be converted to Cartesian form or standard form. This can be done as follows,
Squaring both x and y equation, we have
\[{x^2} = {\left( {a\cos \omega t} \right)^2} = {a^2}{\cos ^2}\omega t\], and for y coordinate,
\[{y^2} = {\left( {a\sin \omega t} \right)^2} = {a^2}{\sin ^2}\omega t\]
Now, we add the two equations together, such that we get
\[{x^2} + {y^2} = {a^2}{\cos ^2}\omega t + {a^2}{\sin ^2}\omega t\]
By factorising out \[{a^2}\], we get
\[{x^2} + {y^2} = {a^2}\left( {{{\cos }^2}\omega t + {{\sin }^2}\omega t} \right)\]
Then, since\[{\cos ^2}\omega t + {\sin ^2}\omega t = 1\], we have
\[{x^2} + {y^2} = {a^2}\] or
\[\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{a^2}}} = 1\]
And this is precisely the Cartesian equation of a circle.
An ellipse would have been,
\[\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1\]
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

