
A particle moves in the x-y plane according to rule \[x = a\cos \omega t\] and \[y = a\sin \omega t\]. The particle follows
(A) An elliptical path
(B) A circular path
(C) A parabolic path
(D) A straight line path inclined equally to x and y axes.
Answer
232.8k+ views
Hint: The equations given are parametric equations of a particular shape. We need to compare the equation with the parametric equations of the given options.
Formula used: In this solution we will be using the following formulae;
\[\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1\] Cartesian equation of an ellipse, with semi major axis \[a\] and semi minor axis \[b\]. \[\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{a^2}}} = 1\] Cartesian equation of a circle, with radius \[a\].
\[x = a\cos \omega t\] and \[y = b\sin \theta \] this is the parametric equation of an ellipse. \[x = a\cos \theta \] and \[y = a\sin \theta \] this is the parametric equation of a circle
Complete Step-by-Step Solution:
A particle is said to move in the x y plane according to the rule
\[x = a\cos \omega t\] and also \[y = a\sin \omega t\]
This is a parametric equation. We shall compare it to the parametric equation of each of the options.
Option A is given an ellipse. The parametric equation of an ellipse centred at the origin is given as
\[x = a\cos \omega t\] and \[y = b\sin \theta \] where \[a\] is the semi major axis and \[b\] is the semi minor axis. (this can be interchanged, depending on the orientation of the ellipse)
Hence, by observation, we see that this is not the equation is not that of an ellipse.
Option B is given as a circle. The parametric equation of a circle is given as
\[x = a\cos \theta \] and \[y = a\sin \theta \] where \[a\] is the radius.
Hence by observation, we can see that the equation above is exactly like the equation of a circle where \[\theta = \omega t\]
Hence, the particle traces out a circular path
Thus, the correct option is B.
Note: Alternatively, the equation can be converted to Cartesian form or standard form. This can be done as follows,
Squaring both x and y equation, we have
\[{x^2} = {\left( {a\cos \omega t} \right)^2} = {a^2}{\cos ^2}\omega t\], and for y coordinate,
\[{y^2} = {\left( {a\sin \omega t} \right)^2} = {a^2}{\sin ^2}\omega t\]
Now, we add the two equations together, such that we get
\[{x^2} + {y^2} = {a^2}{\cos ^2}\omega t + {a^2}{\sin ^2}\omega t\]
By factorising out \[{a^2}\], we get
\[{x^2} + {y^2} = {a^2}\left( {{{\cos }^2}\omega t + {{\sin }^2}\omega t} \right)\]
Then, since\[{\cos ^2}\omega t + {\sin ^2}\omega t = 1\], we have
\[{x^2} + {y^2} = {a^2}\] or
\[\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{a^2}}} = 1\]
And this is precisely the Cartesian equation of a circle.
An ellipse would have been,
\[\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1\]
Formula used: In this solution we will be using the following formulae;
\[\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1\] Cartesian equation of an ellipse, with semi major axis \[a\] and semi minor axis \[b\]. \[\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{a^2}}} = 1\] Cartesian equation of a circle, with radius \[a\].
\[x = a\cos \omega t\] and \[y = b\sin \theta \] this is the parametric equation of an ellipse. \[x = a\cos \theta \] and \[y = a\sin \theta \] this is the parametric equation of a circle
Complete Step-by-Step Solution:
A particle is said to move in the x y plane according to the rule
\[x = a\cos \omega t\] and also \[y = a\sin \omega t\]
This is a parametric equation. We shall compare it to the parametric equation of each of the options.
Option A is given an ellipse. The parametric equation of an ellipse centred at the origin is given as
\[x = a\cos \omega t\] and \[y = b\sin \theta \] where \[a\] is the semi major axis and \[b\] is the semi minor axis. (this can be interchanged, depending on the orientation of the ellipse)
Hence, by observation, we see that this is not the equation is not that of an ellipse.
Option B is given as a circle. The parametric equation of a circle is given as
\[x = a\cos \theta \] and \[y = a\sin \theta \] where \[a\] is the radius.
Hence by observation, we can see that the equation above is exactly like the equation of a circle where \[\theta = \omega t\]
Hence, the particle traces out a circular path
Thus, the correct option is B.
Note: Alternatively, the equation can be converted to Cartesian form or standard form. This can be done as follows,
Squaring both x and y equation, we have
\[{x^2} = {\left( {a\cos \omega t} \right)^2} = {a^2}{\cos ^2}\omega t\], and for y coordinate,
\[{y^2} = {\left( {a\sin \omega t} \right)^2} = {a^2}{\sin ^2}\omega t\]
Now, we add the two equations together, such that we get
\[{x^2} + {y^2} = {a^2}{\cos ^2}\omega t + {a^2}{\sin ^2}\omega t\]
By factorising out \[{a^2}\], we get
\[{x^2} + {y^2} = {a^2}\left( {{{\cos }^2}\omega t + {{\sin }^2}\omega t} \right)\]
Then, since\[{\cos ^2}\omega t + {\sin ^2}\omega t = 1\], we have
\[{x^2} + {y^2} = {a^2}\] or
\[\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{a^2}}} = 1\]
And this is precisely the Cartesian equation of a circle.
An ellipse would have been,
\[\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1\]
Recently Updated Pages
JEE Main 2026 Session 2 Registration Open, Exam Dates, Syllabus & Eligibility

JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

Trending doubts
Understanding Average and RMS Value in Electrical Circuits

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Understanding Atomic Structure for Beginners

Derive an expression for maximum speed of a car on class 11 physics JEE_Main

Understanding Elastic Collisions in Two Dimensions

Class 11 JEE Main Physics Mock Test 2025

Other Pages
NCERT Solutions For Class 11 Physics Chapter 10 Thermal Properties of Matter (2025-26)

NCERT Solutions For Class 11 Physics Chapter 12 Kinetic Theory (2025-26)

Understanding Collisions: Types and Examples for Students

Define thermal expansion for alpha beta and gamma A class 11 physics JEE_Main

Happy New Year Wishes 2026 – 100+ Messages, Quotes, Shayari, Images & Status in All Languages

Valentine Week 2026 List | Valentine Week Days, Dates & Meaning

