A particle moves in a circle of radius 25 cm at 2 revolutions per second. The acceleration of the particle is _________${\pi ^2}m/{s^2}$.
Answer
Verified
414.1k+ views
Hint: We will use the concept of centripetal acceleration to solve that question. Expression of centripetal acceleration is given by: $a = \dfrac{{{\omega ^2}}}{r}$, where $\omega $ is the angular velocity and r is the circular trajectory radius.
Formula used: $a = \dfrac{{{\omega ^2}}}{r}$ and $\omega $= $2\pi f$.
Complete step-by-step solution -
As we know, an acceleration that is guided along the radius towards the middle of the circular path acts on a body undergoing uniform circular motion. That acceleration is called centripetal acceleration.
The magnitude of a particle's acceleration moving in a circular motion is given by,
$a = \dfrac{{{\omega ^2}}}{r}$.
This being so, radius r = 25 cm and frequency = 2 revolutions per second.
We remember, angular speed, $\omega $= $2\pi f$
$ \Rightarrow \omega = 2\pi \times 2 = 4\pi rad/\sec $.
Radius = 25cm = $\dfrac{{25}}{{100}}m = 0.25m$.
Still, Centripetal acceleration,
$ \Rightarrow a = {\omega ^2}r$
Putting all the values given in this equation, we get
$
\Rightarrow a = {(4\pi )^2} \times 0.25m{s^{ - 2}} \\
\Rightarrow a = 4{\pi ^2}m{s^{ - 2}} \\
$
Then the particle's acceleration is $4{\pi ^2}m{s^{ - 2}}$.
Note: First we need to remember some basic points of uniform circular motion in this type of problem. We'll then use the relationship between angular velocity and angular acceleration to resolve the problem. Through this relationship, when the frequency and radius of the circular path is given we can easily find both of them. We can get the required response through this.
Formula used: $a = \dfrac{{{\omega ^2}}}{r}$ and $\omega $= $2\pi f$.
Complete step-by-step solution -
As we know, an acceleration that is guided along the radius towards the middle of the circular path acts on a body undergoing uniform circular motion. That acceleration is called centripetal acceleration.
The magnitude of a particle's acceleration moving in a circular motion is given by,
$a = \dfrac{{{\omega ^2}}}{r}$.
This being so, radius r = 25 cm and frequency = 2 revolutions per second.
We remember, angular speed, $\omega $= $2\pi f$
$ \Rightarrow \omega = 2\pi \times 2 = 4\pi rad/\sec $.
Radius = 25cm = $\dfrac{{25}}{{100}}m = 0.25m$.
Still, Centripetal acceleration,
$ \Rightarrow a = {\omega ^2}r$
Putting all the values given in this equation, we get
$
\Rightarrow a = {(4\pi )^2} \times 0.25m{s^{ - 2}} \\
\Rightarrow a = 4{\pi ^2}m{s^{ - 2}} \\
$
Then the particle's acceleration is $4{\pi ^2}m{s^{ - 2}}$.
Note: First we need to remember some basic points of uniform circular motion in this type of problem. We'll then use the relationship between angular velocity and angular acceleration to resolve the problem. Through this relationship, when the frequency and radius of the circular path is given we can easily find both of them. We can get the required response through this.
Recently Updated Pages
Difference Between Circuit Switching and Packet Switching
Difference Between Mass and Weight
JEE Main Participating Colleges 2024 - A Complete List of Top Colleges
JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips
Sign up for JEE Main 2025 Live Classes - Vedantu
JEE Main 2025 Helpline Numbers - Center Contact, Phone Number, Address
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
Class 11 JEE Main Physics Mock Test 2025
JEE Main Chemistry Question Paper with Answer Keys and Solutions
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
Other Pages
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes - CBSE Physics Chapter 1
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs