
A particle moves from (2,3) m to (4,2) m. Find the magnitude of displacement.
A. \[\sqrt 3 m\]
B. \[2\sqrt 5 m\]
C. \[\sqrt 5 m\]
D. \[2\sqrt 3 m\]
Answer
164.1k+ views
Hint:Before we start addressing the problem, we need to know about the displacement. When a force is applied, the object changes its position which is known as displacement. Since it is a vector quantity it has both direction and magnitude. Here they have given the coordinates of x and y. using these coordinates we need to find the displacement of a particle.
Formula Used:
To find the magnitude of displacement of particle the formula is,
\[S = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} \]
Where, X and y are distance travelled.
Complete step by step solution:
Consider a particle that is moving from one point to another, then we need to find the magnitude of displacement of the particle. We know the formula to find the magnitude of displacement, that is,
\[S = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} \]
Substitute the values of
\[S = \sqrt {{{\left( {4 - 2} \right)}^2} + {{\left( {2 - 3} \right)}^2}} \]
\[\Rightarrow S = \sqrt {{{\left( 2 \right)}^2} + {{\left( { - 1} \right)}^2}} \]
\[\therefore S = \sqrt 5 \]
Therefore, the magnitude of the displacement is \[\sqrt 5 \].
Hence, Option C is the correct answer
Note:Remember that the displacement of the particle has both magnitude and direction. So it is a vector quantity. Also, don’t get confused with the terms distance and displacement; they are both different terms. The displacement of the particle will not depend on the path and does not give any information about the path followed but the distance changes according to the path taken by the particle. And, the distance travelled by a particle can never be zero or negative, it is always positive. But if you consider the displacement of a particle, it can be positive, zero or negative.
Formula Used:
To find the magnitude of displacement of particle the formula is,
\[S = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} \]
Where, X and y are distance travelled.
Complete step by step solution:
Consider a particle that is moving from one point to another, then we need to find the magnitude of displacement of the particle. We know the formula to find the magnitude of displacement, that is,
\[S = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} \]
Substitute the values of
\[S = \sqrt {{{\left( {4 - 2} \right)}^2} + {{\left( {2 - 3} \right)}^2}} \]
\[\Rightarrow S = \sqrt {{{\left( 2 \right)}^2} + {{\left( { - 1} \right)}^2}} \]
\[\therefore S = \sqrt 5 \]
Therefore, the magnitude of the displacement is \[\sqrt 5 \].
Hence, Option C is the correct answer
Note:Remember that the displacement of the particle has both magnitude and direction. So it is a vector quantity. Also, don’t get confused with the terms distance and displacement; they are both different terms. The displacement of the particle will not depend on the path and does not give any information about the path followed but the distance changes according to the path taken by the particle. And, the distance travelled by a particle can never be zero or negative, it is always positive. But if you consider the displacement of a particle, it can be positive, zero or negative.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement
