
A particle moves along a curve of unknown shape, but magnitude of force F is constant and always acts along a tangent to the curve. Then
(A) $\overrightarrow F $ may be conservative
(B) $\overrightarrow F $ must be conservative
(C) $\overrightarrow F $ may be non-conservative
(D) $\overrightarrow F $ must be non-conservative
Answer
216.6k+ views
Hint: We know that conservative force is path independent and non-conservative forces are path dependent. We must observe the work done by F along a curve to know the nature of the force.
Complete step by step answer We can consider a path and see how much work done if an applied force makes some displacement

As you can see in the diagram, a curve of unknown shape has force F acting along the tangent and is constant, so for small displacement dS,
Hence work done $W = \int\limits_0^S {\overrightarrow F d\overrightarrow S } = \int\limits_0^S {FdS\cos \theta } $ since F is constant.
$ \Rightarrow W = F\int\limits_0^S {dS} $so, the work done by force F is dependent on path
From the question we can see that the work done at every point of curve is dependent upon the path followed. If the work done is conservative in nature then, the force acting must be non-conservative.
Hence, option D. $\overrightarrow F $ must be non-conservative.
Additional information
Work done by a conservative force is recoverable and if within a system only conservative force acts then the system's kinetic and potential energy can change. It must be noted that the mechanical energy (that is the sum of kinetic and potential energy) remains the same. Some examples are magnetic force, elastic force, gravitational force, electrostatic force and so on. However, work done by non-conservative forces may lead to dissipation of energy in the form of heat energy and it is not recoverable completely. Examples are air resistance, viscous forces.
Note:
Conservative forces are central in nature. It means that these forces act along the line connecting the centers of the bodies like for example electrostatic and gravitational forces. Non-conservative forces are generally velocity dependent and have retarding nature.
Complete step by step answer We can consider a path and see how much work done if an applied force makes some displacement

As you can see in the diagram, a curve of unknown shape has force F acting along the tangent and is constant, so for small displacement dS,
Hence work done $W = \int\limits_0^S {\overrightarrow F d\overrightarrow S } = \int\limits_0^S {FdS\cos \theta } $ since F is constant.
$ \Rightarrow W = F\int\limits_0^S {dS} $so, the work done by force F is dependent on path
From the question we can see that the work done at every point of curve is dependent upon the path followed. If the work done is conservative in nature then, the force acting must be non-conservative.
Hence, option D. $\overrightarrow F $ must be non-conservative.
Additional information
Work done by a conservative force is recoverable and if within a system only conservative force acts then the system's kinetic and potential energy can change. It must be noted that the mechanical energy (that is the sum of kinetic and potential energy) remains the same. Some examples are magnetic force, elastic force, gravitational force, electrostatic force and so on. However, work done by non-conservative forces may lead to dissipation of energy in the form of heat energy and it is not recoverable completely. Examples are air resistance, viscous forces.
Note:
Conservative forces are central in nature. It means that these forces act along the line connecting the centers of the bodies like for example electrostatic and gravitational forces. Non-conservative forces are generally velocity dependent and have retarding nature.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

Understanding Atomic Structure for Beginners

