
When a particle is moving in vertical circle,
A) Its radial and tangential acceleration both are constant
B) Its radial and tangential acceleration both are varying
C) Its radial acceleration is constant but tangential acceleration is varying
D) Its radial acceleration is varying but tangential acceleration is constant
Answer
172.2k+ views
Hint: To this thing we assume a particle which is moving in vertical circular path when any object moving in vertical circular path then it has both type of acceleration radial acceleration as well as tangential acceleration by the radial acceleration object change its direction regularly means it helps to maintain the motion in a circular path Which provided by the centripetal Force and tangential acceleration act along in tangential direction which manage the speed of object in path
Complete step by step solution:
Whenever object move in a vertical circular path then it has both type of acceleration
Let us assume the object of mass Moving in a vertical circular path with the help of a string when it moved in circular path centripetal force acts on it to maintain its circular path

As you can see in the diagram at any instant the object at point B at this moment the force on the object mentioned in the above diagram.
From this diagram we can write following equations
Balancing force in radial direction
$ \Rightarrow mg\cos \theta + \dfrac{{m{v^2}}}{R} = T$
$ \Rightarrow \dfrac{{m{v^2}}}{R} = T - mg\cos \theta $
Here $\dfrac{{{v^2}}}{R}$ Is the centripetal acceleration toward the centre which is also known as radial acceleration ${a_R}$
From above equation Radial acceleration${a_R}$
$\therefore {a_R} = \dfrac{{T - mg\cos \theta }}{m}$ ................... (1)
From this equation we can see that radial acceleration depends upon angle $\theta $ which is varying so radial acceleration varies in vertical circular motion.
For tangential force
$ \Rightarrow m{a_t} = mg\sin \theta $
So tangential acceleration ${a_t}$
$\therefore {a_t} = g\sin \theta $
So we can see from this equation tangential acceleration also depends upon angle $\theta $ so tangential acceleration is also varying in vertical circular motion.
Hence option B is correct.
Note: We know best speed of object moving in vertical circular path gradually decreases when it move from lowest most point to the top most point and the speed of object gradually increases when object move top most point to the lowermost point it means the magnitude off velocity of object continuously change in vertical motion.
Complete step by step solution:
Whenever object move in a vertical circular path then it has both type of acceleration
Let us assume the object of mass Moving in a vertical circular path with the help of a string when it moved in circular path centripetal force acts on it to maintain its circular path

As you can see in the diagram at any instant the object at point B at this moment the force on the object mentioned in the above diagram.
From this diagram we can write following equations
Balancing force in radial direction
$ \Rightarrow mg\cos \theta + \dfrac{{m{v^2}}}{R} = T$
$ \Rightarrow \dfrac{{m{v^2}}}{R} = T - mg\cos \theta $
Here $\dfrac{{{v^2}}}{R}$ Is the centripetal acceleration toward the centre which is also known as radial acceleration ${a_R}$
From above equation Radial acceleration${a_R}$
$\therefore {a_R} = \dfrac{{T - mg\cos \theta }}{m}$ ................... (1)
From this equation we can see that radial acceleration depends upon angle $\theta $ which is varying so radial acceleration varies in vertical circular motion.
For tangential force
$ \Rightarrow m{a_t} = mg\sin \theta $
So tangential acceleration ${a_t}$
$\therefore {a_t} = g\sin \theta $
So we can see from this equation tangential acceleration also depends upon angle $\theta $ so tangential acceleration is also varying in vertical circular motion.
Hence option B is correct.
Note: We know best speed of object moving in vertical circular path gradually decreases when it move from lowest most point to the top most point and the speed of object gradually increases when object move top most point to the lowermost point it means the magnitude off velocity of object continuously change in vertical motion.
Recently Updated Pages
Sets, Relations, and Functions Mock Test 2025-26

Molarity vs Molality: Definitions, Formulas & Key Differences

Preparation of Hydrogen Gas: Methods & Uses Explained

Polymers in Chemistry: Definition, Types, Examples & Uses

P Block Elements: Definition, Groups, Trends & Properties for JEE/NEET

Order of Reaction in Chemistry: Definition, Formula & Examples

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Displacement-Time Graph and Velocity-Time Graph for JEE

Uniform Acceleration

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Other Pages
NCERT Solutions For Class 11 Physics Chapter 1 Units and Measurements - 2025-26

NCERT Solutions For Class 11 Physics Chapter 2 Motion In A Straight Line - 2025-26

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

CBSE Important Questions for Class 11 Physics Units and Measurement - 2025-26
