
A particle is moving along a straight line and its position is given by the relation:
$x = ({t^3} - 6{t^2} - 15t + 40)m$. Find,
(a) the time at which velocity is zero.
(b) Position and displacement of the particle at that point.
(c) Acceleration for the particle at the line.
Answer
232.5k+ views
Hint: In order to find the solution of the given question we need to know the equations of motion. After applying the equations of motion, we can finally conclude with the correct solution for the given question. First of all we need to differentiate the position with respect to time to get the velocity. After that we need to differentiate the velocity in order to get the required value of the acceleration.
Complete step by step solution:
The position of the particle in the question is given as, $x = ({t^3} - 6{t^2} - 15t + 40)m$
We know that velocity, $v = \dfrac{{dx}}{{dt}} = \dfrac{{d({t^3} - 6{t^2} - 15t + 40)}}{{dt}}$
$\therefore v = 3{t^2} - 12t - 15m{s^{ - 1}}$
Also, the acceleration of a body is given by, $a = \dfrac{{dv}}{{dt}} = \dfrac{{d(3{t^2} - 12t - 15)}}{{dt}}$
$\therefore a = 6t - 12m{s^{ - 2}}$
a) We need to find the time at which the velocity is zero.
Therefore, we can write the equation as,
$\Rightarrow v = 3{t^2} - 12t - 15 = 0$
$ \Rightarrow 3{t^2} - 15t + 3t - 15 = 0$
$ \Rightarrow 3t(t - 5) + 3(t - 5) = 0$
$ \Rightarrow (3t + 3)(t - 5) = 0$
$\therefore t = - 1$ or $t = 5$
Since, the time cannot be negative, therefore, $t = 5s$
b) Now we need to find the position at $t = 5s$
$\Rightarrow x = ({t^3} - 6{t^2} - 15t + 40)m$
$ \Rightarrow x = {5^3} - 6 \times {5^2} - 15 \times 5 + 40$
$ \Rightarrow x = 125 - 150 - 75 + 40 = - 60m$
Similarly, position at $t = 0s$
$\Rightarrow x = ({t^3} - 6{t^2} - 15t + 40)m$
$ \Rightarrow x = {0^3} - 6 \times {0^2} - 15 \times 0 + 40 = 40m$
Now, we need to find the displacement at $t = 5s$ and $t = 0s$
$\Rightarrow s = {x_5} - {x_0} = - 60 - 40 = - 100m$
c) Now, we need to find the acceleration at $t = 5s$
$\Rightarrow a = 6t - 12 = 6 \times 5 - 12$
$\therefore a = 30 - 12 = 18m{s^{ - 2}}$
Therefore, the required acceleration is $18m{s^{ - 2}}$.
Note: We define velocity of an object as the rate of change of its position with respect to reference point. It is the function of time. We define acceleration as the rate of change of velocity of the object with respect to the frame of time. It is a vector quantity which means it has magnitude and direction. When an object accelerates it means the velocity keeps changing. When velocity is zero it means that there is no acceleration.
Complete step by step solution:
The position of the particle in the question is given as, $x = ({t^3} - 6{t^2} - 15t + 40)m$
We know that velocity, $v = \dfrac{{dx}}{{dt}} = \dfrac{{d({t^3} - 6{t^2} - 15t + 40)}}{{dt}}$
$\therefore v = 3{t^2} - 12t - 15m{s^{ - 1}}$
Also, the acceleration of a body is given by, $a = \dfrac{{dv}}{{dt}} = \dfrac{{d(3{t^2} - 12t - 15)}}{{dt}}$
$\therefore a = 6t - 12m{s^{ - 2}}$
a) We need to find the time at which the velocity is zero.
Therefore, we can write the equation as,
$\Rightarrow v = 3{t^2} - 12t - 15 = 0$
$ \Rightarrow 3{t^2} - 15t + 3t - 15 = 0$
$ \Rightarrow 3t(t - 5) + 3(t - 5) = 0$
$ \Rightarrow (3t + 3)(t - 5) = 0$
$\therefore t = - 1$ or $t = 5$
Since, the time cannot be negative, therefore, $t = 5s$
b) Now we need to find the position at $t = 5s$
$\Rightarrow x = ({t^3} - 6{t^2} - 15t + 40)m$
$ \Rightarrow x = {5^3} - 6 \times {5^2} - 15 \times 5 + 40$
$ \Rightarrow x = 125 - 150 - 75 + 40 = - 60m$
Similarly, position at $t = 0s$
$\Rightarrow x = ({t^3} - 6{t^2} - 15t + 40)m$
$ \Rightarrow x = {0^3} - 6 \times {0^2} - 15 \times 0 + 40 = 40m$
Now, we need to find the displacement at $t = 5s$ and $t = 0s$
$\Rightarrow s = {x_5} - {x_0} = - 60 - 40 = - 100m$
c) Now, we need to find the acceleration at $t = 5s$
$\Rightarrow a = 6t - 12 = 6 \times 5 - 12$
$\therefore a = 30 - 12 = 18m{s^{ - 2}}$
Therefore, the required acceleration is $18m{s^{ - 2}}$.
Note: We define velocity of an object as the rate of change of its position with respect to reference point. It is the function of time. We define acceleration as the rate of change of velocity of the object with respect to the frame of time. It is a vector quantity which means it has magnitude and direction. When an object accelerates it means the velocity keeps changing. When velocity is zero it means that there is no acceleration.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

