
A particle at rest, falls under gravity $(g = 9.8 m/s^2)$ such that it travels 53.9 m in the last second of its journey . Total time of fall is
(A) 4 s
(B) 5 s
(C) 6 s
(D) 7 s
Answer
232.8k+ views
Hint: The particle at a height \[h\] at rest (initial velocity is zero), moves under gravity and reaches the ground at time t seconds. The distance travelled in the last second is given (position). Since the position and time of the moving body is concerned (with zero initial velocity), the second law of equation should be applied.
Formula used:
Using the second equation of motion, under gravity g,
\[v = ut + \dfrac{1}{2}g{t^2}\]
The initial and final velocity is denoted by ‘u’ and ‘v’ respectively. And, ‘t’ is the time taken to cover the full distance.
Complete step by step answer:
Initially a particle is at rest, say, at a height h from the ground.
Since the particle is at rest, the distance covered is 0
$velocity = \dfrac{{displacement}}{{time}}$
And, the initial velocity $u = 0m{s^{ - 1}}$
Distance travelled in last second $d = 53.9m$
Given, gravitational force \[g = 9.8m{s^{ - 2}}\]
Let the total time taken by the particle to fall (from the height h to the ground) = $t$
Since the particle started from rest,
$u = 0$
At time $t = t - 1$ seconds,
Therefore, distance travelled by the moving particle in \[\left( {t - 1} \right)\] seconds = $S$
\[\Rightarrow S = 0 + \dfrac{1}{2}g{\left( {t - 1} \right)^2}\]
\[\Rightarrow S = \dfrac{1}{2}g{\left( {t - 1} \right)^2}\]
Similarly , distance travelled in t seconds \[ = 0 + \dfrac{1}{2}g{t^2}\]
\[\Rightarrow S = \dfrac{1}{2}g{t^2}\]
Height h = distance travelled in (t-1) seconds + distance travelled in last second
\[\begin{array}{*{20}{l}}
{\Rightarrow \dfrac{1}{2}g{t^2} = \dfrac{1}{2}g{{\left( {t - 1} \right)}^2} + 53.9} \\
{ \Rightarrow \dfrac{1}{2}g{{ }}\left( {{t^2}-{t^2} + 2t - 1} \right){{ }} = 53.9} \\
{ \Rightarrow g\left( {2t-1} \right){{ }} = 2 \times 53.9} \\
{ \Rightarrow 9.8\left( {2t-1} \right){{ }} = {{ 107}}{{.8}}} \\
{ \Rightarrow 2t-1 = \dfrac{{53.9}}{{4.9}} = {{ }}11} \\
{\therefore t = 6\sec }
\end{array}\]
Total time of fall = 6 seconds
Hence option (C) is the correct one.
Note: When the Velocity and time of a moving body are related (and for non-zero initial velocity), First equation of motion should be applied. It goes like this
\[{{v}} = u + at\]
Acceleration due to gravity (\[g = 9.8{{ }}m{s^{ - 2}}\]) is denoted by ‘a’. And, ‘u’ and ‘v’ denote the initial and final velocity respectively.
Formula used:
Using the second equation of motion, under gravity g,
\[v = ut + \dfrac{1}{2}g{t^2}\]
The initial and final velocity is denoted by ‘u’ and ‘v’ respectively. And, ‘t’ is the time taken to cover the full distance.
Complete step by step answer:
Initially a particle is at rest, say, at a height h from the ground.
Since the particle is at rest, the distance covered is 0
$velocity = \dfrac{{displacement}}{{time}}$
And, the initial velocity $u = 0m{s^{ - 1}}$
Distance travelled in last second $d = 53.9m$
Given, gravitational force \[g = 9.8m{s^{ - 2}}\]
Let the total time taken by the particle to fall (from the height h to the ground) = $t$
Since the particle started from rest,
$u = 0$
At time $t = t - 1$ seconds,
Therefore, distance travelled by the moving particle in \[\left( {t - 1} \right)\] seconds = $S$
\[\Rightarrow S = 0 + \dfrac{1}{2}g{\left( {t - 1} \right)^2}\]
\[\Rightarrow S = \dfrac{1}{2}g{\left( {t - 1} \right)^2}\]
Similarly , distance travelled in t seconds \[ = 0 + \dfrac{1}{2}g{t^2}\]
\[\Rightarrow S = \dfrac{1}{2}g{t^2}\]
Height h = distance travelled in (t-1) seconds + distance travelled in last second
\[\begin{array}{*{20}{l}}
{\Rightarrow \dfrac{1}{2}g{t^2} = \dfrac{1}{2}g{{\left( {t - 1} \right)}^2} + 53.9} \\
{ \Rightarrow \dfrac{1}{2}g{{ }}\left( {{t^2}-{t^2} + 2t - 1} \right){{ }} = 53.9} \\
{ \Rightarrow g\left( {2t-1} \right){{ }} = 2 \times 53.9} \\
{ \Rightarrow 9.8\left( {2t-1} \right){{ }} = {{ 107}}{{.8}}} \\
{ \Rightarrow 2t-1 = \dfrac{{53.9}}{{4.9}} = {{ }}11} \\
{\therefore t = 6\sec }
\end{array}\]
Total time of fall = 6 seconds
Hence option (C) is the correct one.
Note: When the Velocity and time of a moving body are related (and for non-zero initial velocity), First equation of motion should be applied. It goes like this
\[{{v}} = u + at\]
Acceleration due to gravity (\[g = 9.8{{ }}m{s^{ - 2}}\]) is denoted by ‘a’. And, ‘u’ and ‘v’ denote the initial and final velocity respectively.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

