
A particle at rest, falls under gravity $(g = 9.8 m/s^2)$ such that it travels 53.9 m in the last second of its journey . Total time of fall is
(A) 4 s
(B) 5 s
(C) 6 s
(D) 7 s
Answer
216.3k+ views
Hint: The particle at a height \[h\] at rest (initial velocity is zero), moves under gravity and reaches the ground at time t seconds. The distance travelled in the last second is given (position). Since the position and time of the moving body is concerned (with zero initial velocity), the second law of equation should be applied.
Formula used:
Using the second equation of motion, under gravity g,
\[v = ut + \dfrac{1}{2}g{t^2}\]
The initial and final velocity is denoted by ‘u’ and ‘v’ respectively. And, ‘t’ is the time taken to cover the full distance.
Complete step by step answer:
Initially a particle is at rest, say, at a height h from the ground.
Since the particle is at rest, the distance covered is 0
$velocity = \dfrac{{displacement}}{{time}}$
And, the initial velocity $u = 0m{s^{ - 1}}$
Distance travelled in last second $d = 53.9m$
Given, gravitational force \[g = 9.8m{s^{ - 2}}\]
Let the total time taken by the particle to fall (from the height h to the ground) = $t$
Since the particle started from rest,
$u = 0$
At time $t = t - 1$ seconds,
Therefore, distance travelled by the moving particle in \[\left( {t - 1} \right)\] seconds = $S$
\[\Rightarrow S = 0 + \dfrac{1}{2}g{\left( {t - 1} \right)^2}\]
\[\Rightarrow S = \dfrac{1}{2}g{\left( {t - 1} \right)^2}\]
Similarly , distance travelled in t seconds \[ = 0 + \dfrac{1}{2}g{t^2}\]
\[\Rightarrow S = \dfrac{1}{2}g{t^2}\]
Height h = distance travelled in (t-1) seconds + distance travelled in last second
\[\begin{array}{*{20}{l}}
{\Rightarrow \dfrac{1}{2}g{t^2} = \dfrac{1}{2}g{{\left( {t - 1} \right)}^2} + 53.9} \\
{ \Rightarrow \dfrac{1}{2}g{{ }}\left( {{t^2}-{t^2} + 2t - 1} \right){{ }} = 53.9} \\
{ \Rightarrow g\left( {2t-1} \right){{ }} = 2 \times 53.9} \\
{ \Rightarrow 9.8\left( {2t-1} \right){{ }} = {{ 107}}{{.8}}} \\
{ \Rightarrow 2t-1 = \dfrac{{53.9}}{{4.9}} = {{ }}11} \\
{\therefore t = 6\sec }
\end{array}\]
Total time of fall = 6 seconds
Hence option (C) is the correct one.
Note: When the Velocity and time of a moving body are related (and for non-zero initial velocity), First equation of motion should be applied. It goes like this
\[{{v}} = u + at\]
Acceleration due to gravity (\[g = 9.8{{ }}m{s^{ - 2}}\]) is denoted by ‘a’. And, ‘u’ and ‘v’ denote the initial and final velocity respectively.
Formula used:
Using the second equation of motion, under gravity g,
\[v = ut + \dfrac{1}{2}g{t^2}\]
The initial and final velocity is denoted by ‘u’ and ‘v’ respectively. And, ‘t’ is the time taken to cover the full distance.
Complete step by step answer:
Initially a particle is at rest, say, at a height h from the ground.
Since the particle is at rest, the distance covered is 0
$velocity = \dfrac{{displacement}}{{time}}$
And, the initial velocity $u = 0m{s^{ - 1}}$
Distance travelled in last second $d = 53.9m$
Given, gravitational force \[g = 9.8m{s^{ - 2}}\]
Let the total time taken by the particle to fall (from the height h to the ground) = $t$
Since the particle started from rest,
$u = 0$
At time $t = t - 1$ seconds,
Therefore, distance travelled by the moving particle in \[\left( {t - 1} \right)\] seconds = $S$
\[\Rightarrow S = 0 + \dfrac{1}{2}g{\left( {t - 1} \right)^2}\]
\[\Rightarrow S = \dfrac{1}{2}g{\left( {t - 1} \right)^2}\]
Similarly , distance travelled in t seconds \[ = 0 + \dfrac{1}{2}g{t^2}\]
\[\Rightarrow S = \dfrac{1}{2}g{t^2}\]
Height h = distance travelled in (t-1) seconds + distance travelled in last second
\[\begin{array}{*{20}{l}}
{\Rightarrow \dfrac{1}{2}g{t^2} = \dfrac{1}{2}g{{\left( {t - 1} \right)}^2} + 53.9} \\
{ \Rightarrow \dfrac{1}{2}g{{ }}\left( {{t^2}-{t^2} + 2t - 1} \right){{ }} = 53.9} \\
{ \Rightarrow g\left( {2t-1} \right){{ }} = 2 \times 53.9} \\
{ \Rightarrow 9.8\left( {2t-1} \right){{ }} = {{ 107}}{{.8}}} \\
{ \Rightarrow 2t-1 = \dfrac{{53.9}}{{4.9}} = {{ }}11} \\
{\therefore t = 6\sec }
\end{array}\]
Total time of fall = 6 seconds
Hence option (C) is the correct one.
Note: When the Velocity and time of a moving body are related (and for non-zero initial velocity), First equation of motion should be applied. It goes like this
\[{{v}} = u + at\]
Acceleration due to gravity (\[g = 9.8{{ }}m{s^{ - 2}}\]) is denoted by ‘a’. And, ‘u’ and ‘v’ denote the initial and final velocity respectively.
Recently Updated Pages
Circuit Switching vs Packet Switching: Key Differences Explained

Mass vs Weight: Key Differences Explained for Students

Alpha, Beta, and Gamma Decay Explained

Alpha Particle Scattering and Rutherford Model Explained

Angular Momentum of a Rotating Body: Definition & Formula

Apparent Frequency Explained: Formula, Uses & Examples

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

How to Convert a Galvanometer into an Ammeter or Voltmeter

