
A particle A of mass $\dfrac{{10}}{7}kg$ is moving in the positive direction of $x$ . At initial position $x = 0$ its velocity is $1m/s$ , then its velocity at $x = 10m$ is: (use the graph given)

A) $4m/s$
B) $2m/s$
C) $3\sqrt 2 m/s$
D) $\dfrac{{100}}{3}m/s$
Answer
125.1k+ views
Hint: First, we will derive the relation between force and distance by using the relation between Power force and Velocity and the equate the area under the graph with the derived formula to get the final answer.
Formula used:
Power, $P = F \times v$
Where, $F$ is the force and $v$ is the velocity
Area of trapezium, $A = \dfrac{1}{2}(a + b) \times h$
Where, $a,b$ are the lengths of the parallel sides of trapezium and $h$ is the height of the trapezium.
Complete step by step solution:
As we know, Power, $P = F \times v$
Where, $F$ is the force and $v$ is the velocity
Also, $F = ma$ $ \Rightarrow P = ma \times v$
Since $a$ is the derivative of $v$ , and $v$ is the derivative of $m$ ,
$P = m\dfrac{{dv}}{{dt}} \times v \Rightarrow P = m\dfrac{{dv}}{{dx}}\dfrac{{dx}}{{dt}} \times v$
$ \Rightarrow P.dx = mvdv\dfrac{{dx}}{{dt}}$
Which gives, $P.dx = m{v^2}dv$ (since $\dfrac{{dx}}{{dt}} = v$ )
Integrating both sides,
$\int {P.dx = \int\limits_1^v {m{v^2}dv} } $
$ \Rightarrow P = [\dfrac{{m{v^3}}}{3}]_1^v$
Which gives, $P = \dfrac{m}{3}({v^3} - 1)$
Now we have mass equal to $\dfrac{{10}}{7}kg$
Also, the area under a curve between two points can be found by doing a definite integral between the two points. Here that area is present in the shape of trapezium. A trapezium is a $2D$ shape and a type of quadrilateral, which has only two parallel sides and the other two sides are non-parallel.
Therefore, Area of trapezium, $A = \dfrac{1}{2}(a + b) \times h$
Where, $a,b$ are the lengths of the parallel sides of trapezium and $h$ is the height of the trapezium.
$ \Rightarrow A = \dfrac{1}{2}(2 + 4) \times 10 = \dfrac{1}{2} \times 6 \times 10 = 30$
We derived a relation between power and distance. Equate both the values
$ \Rightarrow \dfrac{m}{3}({v^3} - 1) = 30$
$ \Rightarrow \dfrac{{10}}{{7 \times 3}}({v^3} - 1) = 30$
This gives, $v = 4m/s$
Hence, Option (A) is correct.
Note: Convert all the given values into SI units before using them in any question. Don’t forget to put units in the final answer. We had to derive a relation between Power and Mass because in the question, the graph is given in terms of Power and mass only.
Formula used:
Power, $P = F \times v$
Where, $F$ is the force and $v$ is the velocity
Area of trapezium, $A = \dfrac{1}{2}(a + b) \times h$
Where, $a,b$ are the lengths of the parallel sides of trapezium and $h$ is the height of the trapezium.
Complete step by step solution:
As we know, Power, $P = F \times v$
Where, $F$ is the force and $v$ is the velocity
Also, $F = ma$ $ \Rightarrow P = ma \times v$
Since $a$ is the derivative of $v$ , and $v$ is the derivative of $m$ ,
$P = m\dfrac{{dv}}{{dt}} \times v \Rightarrow P = m\dfrac{{dv}}{{dx}}\dfrac{{dx}}{{dt}} \times v$
$ \Rightarrow P.dx = mvdv\dfrac{{dx}}{{dt}}$
Which gives, $P.dx = m{v^2}dv$ (since $\dfrac{{dx}}{{dt}} = v$ )
Integrating both sides,
$\int {P.dx = \int\limits_1^v {m{v^2}dv} } $
$ \Rightarrow P = [\dfrac{{m{v^3}}}{3}]_1^v$
Which gives, $P = \dfrac{m}{3}({v^3} - 1)$
Now we have mass equal to $\dfrac{{10}}{7}kg$
Also, the area under a curve between two points can be found by doing a definite integral between the two points. Here that area is present in the shape of trapezium. A trapezium is a $2D$ shape and a type of quadrilateral, which has only two parallel sides and the other two sides are non-parallel.
Therefore, Area of trapezium, $A = \dfrac{1}{2}(a + b) \times h$
Where, $a,b$ are the lengths of the parallel sides of trapezium and $h$ is the height of the trapezium.
$ \Rightarrow A = \dfrac{1}{2}(2 + 4) \times 10 = \dfrac{1}{2} \times 6 \times 10 = 30$
We derived a relation between power and distance. Equate both the values
$ \Rightarrow \dfrac{m}{3}({v^3} - 1) = 30$
$ \Rightarrow \dfrac{{10}}{{7 \times 3}}({v^3} - 1) = 30$
This gives, $v = 4m/s$
Hence, Option (A) is correct.
Note: Convert all the given values into SI units before using them in any question. Don’t forget to put units in the final answer. We had to derive a relation between Power and Mass because in the question, the graph is given in terms of Power and mass only.
Recently Updated Pages
Difference Between Circuit Switching and Packet Switching

Difference Between Mass and Weight

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main 2025 Helpline Numbers - Center Contact, Phone Number, Address

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More

Class 11 JEE Main Physics Mock Test 2025

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
