
A parabolic bowl with its bottom at origin has the shape $y = \dfrac{{{x^2}}}{{20}}$. Here $x$ and $y$ are in meters. The maximum height at which a small mass $m$can be placed on the bowl without slipping, (coefficient of static friction is 0.5), is:

A) $2.5m$
B) $1.25m$
C) $1.0m$
D) $4.0m$
Answer
218.7k+ views
Hint: In order to solve the given question, first of all we need to find the value of $x$. After that we can put the value of $x$ in the equation for maximum height and get the required value. Now, for finding the value of $x$ we need to find the slope of the curve and we need to find the forces acting in the horizontal direction. Then we can finally conclude with the correct solution of the given question.
Complete step by step solution:
The shape of the parabolic bowl is given as, $y = \dfrac{{{x^2}}}{{20}}$
Now, let us find the slope of the bowl. So, the equation can be written as,
$\Rightarrow \tan \theta = \dfrac{{dy}}{{dx}}$
$ \Rightarrow \tan \theta = \dfrac{{d({x^2})}}{{dx(20)}} = \dfrac{{2x}}{{20}} = \dfrac{x}{{10}}$…………… (i)
We know that in the horizontal direction,
$\Rightarrow \mu N\cos \theta = N\sin \theta $
$ \Rightarrow \tan \theta = \mu $……………….. (ii)
The value of coefficient of friction is given as,$\mu = 0.5$
Now, from equation (i) and (ii), we can write it as,
$\Rightarrow \dfrac{x}{{10}} = 0.5$
$\therefore x = 5m$
Now, we need to find the maximum height. So, from the figure, for maximum height we need to take $y = \dfrac{{{x^2}}}{{20}}$.
After putting the value of $x$ in the above equation, we get,
$\Rightarrow y = \dfrac{{{x^2}}}{{20}} = \dfrac{{25}}{{20}} = \dfrac{5}{4} = 1.25m$
Therefore, the value of maximum height is $1.25m$.
Hence, we can conclude that option (B), i.e. $1.25m$ is the correct choice of the given question.
Note: From Newton’s third law of motion, we know that every action force has an equal reaction force which acts in the opposite direction. In case when the body is in a static position, the forces acting on the body have to be balanced or in other words we can say that their sum has to be zero.
Complete step by step solution:
The shape of the parabolic bowl is given as, $y = \dfrac{{{x^2}}}{{20}}$
Now, let us find the slope of the bowl. So, the equation can be written as,
$\Rightarrow \tan \theta = \dfrac{{dy}}{{dx}}$
$ \Rightarrow \tan \theta = \dfrac{{d({x^2})}}{{dx(20)}} = \dfrac{{2x}}{{20}} = \dfrac{x}{{10}}$…………… (i)
We know that in the horizontal direction,
$\Rightarrow \mu N\cos \theta = N\sin \theta $
$ \Rightarrow \tan \theta = \mu $……………….. (ii)
The value of coefficient of friction is given as,$\mu = 0.5$
Now, from equation (i) and (ii), we can write it as,
$\Rightarrow \dfrac{x}{{10}} = 0.5$
$\therefore x = 5m$
Now, we need to find the maximum height. So, from the figure, for maximum height we need to take $y = \dfrac{{{x^2}}}{{20}}$.
After putting the value of $x$ in the above equation, we get,
$\Rightarrow y = \dfrac{{{x^2}}}{{20}} = \dfrac{{25}}{{20}} = \dfrac{5}{4} = 1.25m$
Therefore, the value of maximum height is $1.25m$.
Hence, we can conclude that option (B), i.e. $1.25m$ is the correct choice of the given question.
Note: From Newton’s third law of motion, we know that every action force has an equal reaction force which acts in the opposite direction. In case when the body is in a static position, the forces acting on the body have to be balanced or in other words we can say that their sum has to be zero.
Recently Updated Pages
Four particles of masses m 2m 3m and 4m are placed class 11 physics JEE_Main

What is the period of small oscillations of the block class 11 physics JEE_Main

A thin tube sealed at both ends is 100cm long It lies class 11 physics JEE_Main

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE General Topics in Chemistry Important Concepts and Tips

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

How to Convert a Galvanometer into an Ammeter or Voltmeter

