
A moving coil galvanometer has been fitted with a rectangular coil having $50\;$ turns and dimensions$5\;cm \times 3\;cm$. The radial magnetic field in which the coil is suspended is of $0.05\;Wb/{m^2}$. The torsional constant of the spring is $1.5 \times {10^{ - 9}}\;Nm/{\text{degree}}$. Obtain the current required to be passed through the galvanometer so as to produce a deflection of ${30^0}$.
Answer
219k+ views
Hint: A moving coil galvanometer is a device that is used to detect or measure very small amounts of the current of the order ${10^{ - 8}}\;A$. It works on the principle that when current flows through a rectangular coil kept in a magnetic field, it is deflected. The angle of deflection is proportional to the current through the coil.
Formula used:
$I = \dfrac{C}{{NAB}}\theta $
where $I$ stands for the current through the galvanometer, $C$ stands for a torsional couple of the spring, $N$ stands for the number of turns of the coil, $A$ is the area of the coil, $B$ stands for the magnetic induction, and $\theta $ stands for the angle of deflection.
Complete step by step solution:
The number of turns, $N = 50$
The magnetic field, $B = 0.05\;Wb/{m^2}$
The torsional constant of the spring, $C = 1.5 \times {10^{ - 9}}\;Nm/{\text{degree}}$.
The length of the coil, $l = 5\;cm$
The breadth of the coil, $b = 3\;cm$
The area of the coil will be, $A = l \times b = \left( {5 \times {{10}^{ - 2}}} \right) \times \left( {3 \times {{10}^{ - 2}}} \right) = 1.5 \times {10^{ - 3}}\;{m^2}$
The angle of deflection, $\theta = {30^0}$
The current through the coil can be obtained by the formula, $I = \dfrac{C}{{NAB}}\theta $
Substituting all the values in the above equation, we get
$I = \dfrac{{1.5 \times {{10}^{ - 9}}}}{{50 \times 0.05 \times 1.5 \times {{10}^{ - 3}}}} \times 30 = 1.2 \times {10^{ - 5}}\;A$
The answer is: $1.2 \times {10^{ - 5}}\;A$
Additional information:
A sensitive galvanometer will give a large deflection for a small current. Current sensitivity can be defined as the deflection produced in the galvanometer for unit current. Voltage sensitivity can be defined as the deflection produced in the galvanometer for unit voltage.
Note:
The current through the galvanometer is directly proportional to the deflection of the galvanometer. To increase the current sensitivity, $N,\;A$ and $B$ should be large and $C$ should be small. To increase the voltage sensitivity $N,\;A$ and $B$ should be large and $C$ and $G$ should be small. Here $G$ is the galvanometer resistance.
Formula used:
$I = \dfrac{C}{{NAB}}\theta $
where $I$ stands for the current through the galvanometer, $C$ stands for a torsional couple of the spring, $N$ stands for the number of turns of the coil, $A$ is the area of the coil, $B$ stands for the magnetic induction, and $\theta $ stands for the angle of deflection.
Complete step by step solution:
The number of turns, $N = 50$
The magnetic field, $B = 0.05\;Wb/{m^2}$
The torsional constant of the spring, $C = 1.5 \times {10^{ - 9}}\;Nm/{\text{degree}}$.
The length of the coil, $l = 5\;cm$
The breadth of the coil, $b = 3\;cm$
The area of the coil will be, $A = l \times b = \left( {5 \times {{10}^{ - 2}}} \right) \times \left( {3 \times {{10}^{ - 2}}} \right) = 1.5 \times {10^{ - 3}}\;{m^2}$
The angle of deflection, $\theta = {30^0}$
The current through the coil can be obtained by the formula, $I = \dfrac{C}{{NAB}}\theta $
Substituting all the values in the above equation, we get
$I = \dfrac{{1.5 \times {{10}^{ - 9}}}}{{50 \times 0.05 \times 1.5 \times {{10}^{ - 3}}}} \times 30 = 1.2 \times {10^{ - 5}}\;A$
The answer is: $1.2 \times {10^{ - 5}}\;A$
Additional information:
A sensitive galvanometer will give a large deflection for a small current. Current sensitivity can be defined as the deflection produced in the galvanometer for unit current. Voltage sensitivity can be defined as the deflection produced in the galvanometer for unit voltage.
Note:
The current through the galvanometer is directly proportional to the deflection of the galvanometer. To increase the current sensitivity, $N,\;A$ and $B$ should be large and $C$ should be small. To increase the voltage sensitivity $N,\;A$ and $B$ should be large and $C$ and $G$ should be small. Here $G$ is the galvanometer resistance.
Recently Updated Pages
A square frame of side 10 cm and a long straight wire class 12 physics JEE_Main

The work done in slowly moving an electron of charge class 12 physics JEE_Main

Two identical charged spheres suspended from a common class 12 physics JEE_Main

According to Bohrs theory the timeaveraged magnetic class 12 physics JEE_Main

ill in the blanks Pure tungsten has A Low resistivity class 12 physics JEE_Main

The value of the resistor RS needed in the DC voltage class 12 physics JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Centrifugal Force in Physics

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

