
A moving coil galvanometer has 150 equal divisions. Its current sensitivity is 10 divisions per mill ampere and voltage sensitivity is 2 divisions per millivolt. In order that each division reads 1 volt, the resistance in ohm needs to be connected in series, with the coil will be:
A) ${10^3}$
B) ${10^5}$
C) $99995$
D) $9995$
Answer
232.8k+ views
Hint: A galvanometer is a device employed to detect current in a circuit. It is an electromagnetic device that has a very high sensitivity that can measure very low currents of the order of microamperes. It is based on the phenomenon of electromagnetic induction.
Complete step by step solution:
No. of divisions in the galvanometer $ = 150$
Current sensitivity $ = 10$ div per milliampere
Voltage sensitivity $ = 2$ div per millivolt
The maximum current that is used in galvanometer for a full scale deflection $ = {I_g} = \dfrac{{150}}{{10}} = 15mA$ ___ $(1)$
For the same full scale deflection, voltage required $ = {V_g} = \dfrac{{150}}{2}75mV$ ___ $(2)$
Using $(1)\& (2)$ , resistance of the galvanometer $ = {R_g} = \dfrac{{{V_g}}}{{{I_g}}}\dfrac{{75}}{{15}} = 5\Omega $
Therefore, the resistance required in series to get converted into voltmeter of range V is
$\Rightarrow 150 \times 1 = 150V$ is
$\Rightarrow R = \dfrac{V}{{{I_g}}} - {R_g}$
$\therefore R = \dfrac{{150}}{{15 \times {{10}^{ - 3}}}} - 5 = 10000 - 5 = 9995\Omega $
Final Answer, Resistance is $9995\Omega $
Hence (D) is correct.
Note: Moving coil galvanometer works on the principle of electromagnetic induction which states that when a current carrying piece of wire is placed in a magnetic field, it experiences a force. In the moving coil galvanometer, the magnetic field is radial.
Complete step by step solution:
No. of divisions in the galvanometer $ = 150$
Current sensitivity $ = 10$ div per milliampere
Voltage sensitivity $ = 2$ div per millivolt
The maximum current that is used in galvanometer for a full scale deflection $ = {I_g} = \dfrac{{150}}{{10}} = 15mA$ ___ $(1)$
For the same full scale deflection, voltage required $ = {V_g} = \dfrac{{150}}{2}75mV$ ___ $(2)$
Using $(1)\& (2)$ , resistance of the galvanometer $ = {R_g} = \dfrac{{{V_g}}}{{{I_g}}}\dfrac{{75}}{{15}} = 5\Omega $
Therefore, the resistance required in series to get converted into voltmeter of range V is
$\Rightarrow 150 \times 1 = 150V$ is
$\Rightarrow R = \dfrac{V}{{{I_g}}} - {R_g}$
$\therefore R = \dfrac{{150}}{{15 \times {{10}^{ - 3}}}} - 5 = 10000 - 5 = 9995\Omega $
Final Answer, Resistance is $9995\Omega $
Hence (D) is correct.
Note: Moving coil galvanometer works on the principle of electromagnetic induction which states that when a current carrying piece of wire is placed in a magnetic field, it experiences a force. In the moving coil galvanometer, the magnetic field is radial.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Understanding Uniform Acceleration in Physics

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

