
A monochromatic light of wavelength \[\lambda \] is incident on a hydrogen atom that lifts it to $3^{rd}$ orbit from ground level. Find the wavelength and frequency of the incident photon.
(Given: \[{E_3} = - 1.51{\text{ }}eV\], \[{E_1} = - 13.6eV\])
Answer
138k+ views
Hint: Use the Bohr’s theory due to the incidence of monochromatic light on the hydrogen atom that lifts it from ground level to $3^{rd}$ orbit in which there is a relationship between energy change and frequency. We also get the energy equation in terms of wavelength.
Formula used:
The change in energy of the photon,
\[\Delta E = h\nu \]
\[ \Rightarrow {E_1} - {E_3} = h\nu \].
where $h$ = planck constant and $\nu $ = frequency of the incident photon.
\[\Delta E = \dfrac{{hc}}{\lambda }\] where $\lambda $= wavelength of the incident photon and \[c\]is the speed of light.
\[ \Rightarrow {E_1} - {E_3} = \dfrac{{hc}}{\lambda }\].
Complete step by step answer:
Monochromatic light of wavelength $\lambda $ incident on a hydrogen atom. Then it is lifted to the 3rd orbit from the ground level.hence from the Bohr’s theory a photon is absorbed by the hydrogen atom.
The energy of 3rd orbit is \[{E_3}\] and the energy of ground level is \[{E_1}\].
Given, the energy of the incident photon at ground level,\[{E_1} = - 13.6eV\]
And, the energy of the incident photon at the 3rd orbit, \[{E_3} = - 1.51{\text{ }}eV\]
According to Bohr’s theory,
\[\Delta E = h\nu \]
\[ \Rightarrow {E_3} - {E_1} = h\nu \]…………………(1)
where $h$ = plank constant = $6.625 \times {10^{ - 34}}$
$\nu $ = frequency of the incident photon.
\[{E_3} - {E_1} = ( - 1.51) - ( - 13.6) = 12.09eV\]
\[ \Rightarrow {E_3} - {E_1} = 12.09 \times 1.6 \times {10^{ - 19}}\]\[J\]
\[ \Rightarrow {E_3} - {E_1} = 19.344 \times {10^{ - 19}}\]\[J\]
\[\therefore \nu = \dfrac{{{E_3} - {E_1}}}{h}\]
\[ \Rightarrow \nu = \dfrac{{19.344 \times {{10}^{ - 19}}}}{{6.625 \times {{10}^{ - 34}}}}\]
\[ \Rightarrow \nu = 2.919 \times {10^{15}}\]
Eq (1) can be written as, \[{E_3} - {E_1} = \dfrac{{hc}}{\lambda }\],
Since the frequency \[\nu = \dfrac{c}{\lambda }\] where $\lambda $ = wavelength of the incident photon
and \[c\]= speed of light = \[3 \times {10^8}m/s\]
\[\therefore \lambda = \dfrac{{hc}}{{({E_3} - {E_1})}}\]
\[ \Rightarrow \lambda = \dfrac{{6.625 \times {{10}^{ - 34}} \times 3 \times {{10}^8}}}{{19.344 \times {{10}^{ - 19}}}}\]
\[ \Rightarrow \lambda = 1.027 \times {10^{ - 7}}m\]
Hence the wavelength of the incident photon is \[\lambda = 1.027 \times {10^{ - 7}}m\] and the frequency of the photon is \[\nu = 2.919 \times {10^{15}}\].
Note: When the electron of a hydrogen atom comes down from a higher energy level(\[{E_i}\]) to a lower energy level (\[{E_f}\]) a photon of wavelength $\lambda $ and frequency $\nu $ is emitted from the atom, hence from the Bohr’ theory we get, \[{E_i} - {E_f} = h\nu = \dfrac{{hc}}{\lambda }\] .
And in the opposite case, When the electron of a hydrogen atom lifts from a lower energy level (\[{E_f}\]) to a higher energy level (\[{E_i}\]), a photon of wavelength $\lambda $ and frequency $\nu $ is absorbed by the atom, hence from the Bohr’ theory we get, \[{E_i} - {E_f} = h\nu = \dfrac{{hc}}{\lambda }\] .
Due to the absorption of the photon, some hydrogen spectrums become dark – these are called an absorption spectrum.
Formula used:
The change in energy of the photon,
\[\Delta E = h\nu \]
\[ \Rightarrow {E_1} - {E_3} = h\nu \].
where $h$ = planck constant and $\nu $ = frequency of the incident photon.
\[\Delta E = \dfrac{{hc}}{\lambda }\] where $\lambda $= wavelength of the incident photon and \[c\]is the speed of light.
\[ \Rightarrow {E_1} - {E_3} = \dfrac{{hc}}{\lambda }\].
Complete step by step answer:
Monochromatic light of wavelength $\lambda $ incident on a hydrogen atom. Then it is lifted to the 3rd orbit from the ground level.hence from the Bohr’s theory a photon is absorbed by the hydrogen atom.
The energy of 3rd orbit is \[{E_3}\] and the energy of ground level is \[{E_1}\].
Given, the energy of the incident photon at ground level,\[{E_1} = - 13.6eV\]
And, the energy of the incident photon at the 3rd orbit, \[{E_3} = - 1.51{\text{ }}eV\]
According to Bohr’s theory,
\[\Delta E = h\nu \]
\[ \Rightarrow {E_3} - {E_1} = h\nu \]…………………(1)
where $h$ = plank constant = $6.625 \times {10^{ - 34}}$
$\nu $ = frequency of the incident photon.
\[{E_3} - {E_1} = ( - 1.51) - ( - 13.6) = 12.09eV\]
\[ \Rightarrow {E_3} - {E_1} = 12.09 \times 1.6 \times {10^{ - 19}}\]\[J\]
\[ \Rightarrow {E_3} - {E_1} = 19.344 \times {10^{ - 19}}\]\[J\]
\[\therefore \nu = \dfrac{{{E_3} - {E_1}}}{h}\]
\[ \Rightarrow \nu = \dfrac{{19.344 \times {{10}^{ - 19}}}}{{6.625 \times {{10}^{ - 34}}}}\]
\[ \Rightarrow \nu = 2.919 \times {10^{15}}\]
Eq (1) can be written as, \[{E_3} - {E_1} = \dfrac{{hc}}{\lambda }\],
Since the frequency \[\nu = \dfrac{c}{\lambda }\] where $\lambda $ = wavelength of the incident photon
and \[c\]= speed of light = \[3 \times {10^8}m/s\]
\[\therefore \lambda = \dfrac{{hc}}{{({E_3} - {E_1})}}\]
\[ \Rightarrow \lambda = \dfrac{{6.625 \times {{10}^{ - 34}} \times 3 \times {{10}^8}}}{{19.344 \times {{10}^{ - 19}}}}\]
\[ \Rightarrow \lambda = 1.027 \times {10^{ - 7}}m\]
Hence the wavelength of the incident photon is \[\lambda = 1.027 \times {10^{ - 7}}m\] and the frequency of the photon is \[\nu = 2.919 \times {10^{15}}\].
Note: When the electron of a hydrogen atom comes down from a higher energy level(\[{E_i}\]) to a lower energy level (\[{E_f}\]) a photon of wavelength $\lambda $ and frequency $\nu $ is emitted from the atom, hence from the Bohr’ theory we get, \[{E_i} - {E_f} = h\nu = \dfrac{{hc}}{\lambda }\] .
And in the opposite case, When the electron of a hydrogen atom lifts from a lower energy level (\[{E_f}\]) to a higher energy level (\[{E_i}\]), a photon of wavelength $\lambda $ and frequency $\nu $ is absorbed by the atom, hence from the Bohr’ theory we get, \[{E_i} - {E_f} = h\nu = \dfrac{{hc}}{\lambda }\] .
Due to the absorption of the photon, some hydrogen spectrums become dark – these are called an absorption spectrum.
Recently Updated Pages
Young's Double Slit Experiment Step by Step Derivation

How to find Oxidation Number - Important Concepts for JEE

How Electromagnetic Waves are Formed - Important Concepts for JEE

Electrical Resistance - Important Concepts and Tips for JEE

Average Atomic Mass - Important Concepts and Tips for JEE

Chemical Equation - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Degree of Dissociation and Its Formula With Solved Example for JEE

Physics Average Value and RMS Value JEE Main 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11

Formula for number of images formed by two plane mirrors class 12 physics JEE_Main

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE
