
A metallic sphere weighs $210g$ in air, $180g$ water, and $120g$ an unknown liquid. Find the density of metal and liquid.
\[\left( a \right)\]$3,7$
\[\left( b \right)\]$7,3$
\[\left( c \right)\]$4,6$
\[\left( d \right)\]$6,4$
Answer
214.2k+ views
Hint: The quantitative relation of density (mass of a unit volume) of a substance to the density of given reference material is the Relative density or specific gravity. Relative density typically suggests that denseness concerning water. It’s outlined as a quantitative relation of the density of an explicit substance with that of water.
Formula used:
The relative density of metal $ = \dfrac{{{\text{Weight in air}}}}{{Change{\text{ in weight of water}}}}$
Complete step by step solution: In the above question there is a sphere whose weights get vary as the medium gets changed in an unknown liquid. Therefore in this question, we are going to find the density in both liquid and metal.
As we know,
The relative density of metal $ = \dfrac{{{\text{Weight in air}}}}{{Change{\text{ in weight of water}}}}$
In terms of the statement, we can say that relative density is equal to the weight in the air upon the change in weight of the water.
Therefore putting the values, we get
$ \Rightarrow \dfrac{{210}}{{210 - 180}}$
$ \Rightarrow 7$
Therefore the density of the metal will be equal to $7g/c{m^2}$
Now since
The upthrust in the liquid will be equal to the change in the weight of the liquid.
Therefore it can be written as,
$ \Rightarrow \left( {{V_{solid}}} \right)\left( {{\rho _{liquid}}} \right)g$
Or it can be written as
$ \Rightarrow \vartriangle \omega \propto {\rho _{liquid}}$
Therefore, mathematically it will be expressed as
$ \Rightarrow \dfrac{{\vartriangle {\omega _l}}}{{\vartriangle {\omega _\omega }}} = \dfrac{{{\rho _l}}}{{{\rho _\omega }}}$
Therefore,
$ \Rightarrow {\rho _l} = \dfrac{{\vartriangle {\omega _l}}}{{\vartriangle {\omega _\omega }}}{\rho _\omega }$
Now we will put the values of it, we get
$ \Rightarrow \left( {\dfrac{{210 - 120}}{{210 - 180}}} \right)\left( 1 \right)gm/c{m^3}$
$ \Rightarrow 3g/c{m^3}$
Therefore the answer will be an option $b$
Notes we can measure denseness (properly called specific gravity) employing a measuring system if the substance is a liquid, like beer or wine. If employing a density bottle, we get SG instead of pure density, though we'll convert into density by using the density of water at the actual temperature taken throughout the measurement. One cannot use a cheap instrument, to my information, to measure density directly.
Formula used:
The relative density of metal $ = \dfrac{{{\text{Weight in air}}}}{{Change{\text{ in weight of water}}}}$
Complete step by step solution: In the above question there is a sphere whose weights get vary as the medium gets changed in an unknown liquid. Therefore in this question, we are going to find the density in both liquid and metal.
As we know,
The relative density of metal $ = \dfrac{{{\text{Weight in air}}}}{{Change{\text{ in weight of water}}}}$
In terms of the statement, we can say that relative density is equal to the weight in the air upon the change in weight of the water.
Therefore putting the values, we get
$ \Rightarrow \dfrac{{210}}{{210 - 180}}$
$ \Rightarrow 7$
Therefore the density of the metal will be equal to $7g/c{m^2}$
Now since
The upthrust in the liquid will be equal to the change in the weight of the liquid.
Therefore it can be written as,
$ \Rightarrow \left( {{V_{solid}}} \right)\left( {{\rho _{liquid}}} \right)g$
Or it can be written as
$ \Rightarrow \vartriangle \omega \propto {\rho _{liquid}}$
Therefore, mathematically it will be expressed as
$ \Rightarrow \dfrac{{\vartriangle {\omega _l}}}{{\vartriangle {\omega _\omega }}} = \dfrac{{{\rho _l}}}{{{\rho _\omega }}}$
Therefore,
$ \Rightarrow {\rho _l} = \dfrac{{\vartriangle {\omega _l}}}{{\vartriangle {\omega _\omega }}}{\rho _\omega }$
Now we will put the values of it, we get
$ \Rightarrow \left( {\dfrac{{210 - 120}}{{210 - 180}}} \right)\left( 1 \right)gm/c{m^3}$
$ \Rightarrow 3g/c{m^3}$
Therefore the answer will be an option $b$
Notes we can measure denseness (properly called specific gravity) employing a measuring system if the substance is a liquid, like beer or wine. If employing a density bottle, we get SG instead of pure density, though we'll convert into density by using the density of water at the actual temperature taken throughout the measurement. One cannot use a cheap instrument, to my information, to measure density directly.
Recently Updated Pages
Chemical Equation - Important Concepts and Tips for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

Conduction, Transfer of Energy Important Concepts and Tips for JEE

JEE Analytical Method of Vector Addition Important Concepts and Tips

Atomic Size - Important Concepts and Tips for JEE

JEE Main 2022 (June 29th Shift 1) Maths Question Paper with Answer Key

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Equation of Trajectory in Projectile Motion: Derivation & Proof

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Hybridisation in Chemistry – Concept, Types & Applications

Angle of Deviation in a Prism – Formula, Diagram & Applications

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

Collision: Meaning, Types & Examples in Physics

