
A metallic block has no potential difference applied across it, then the mean velocity of free electrons at absolute temperature T is
A. Proportional to T
B. Proportional to \[\sqrt T \]
C. Zero
D. Finite but independent of T
Answer
163.2k+ views
Hint: The concept used in this problem is the kinetic theory of gases and the Maxwell-Boltzmann distribution. We will use the Maxwell-Boltzmann distribution to find the mean velocity of free electrons in a metallic block at a given temperature.
Complete step by step solution:
We know that in a metallic block, the conduction of electricity is mainly due to the movement of free electrons. According to the kinetic theory of gases, the velocity distribution of free electrons in a metallic block follows the Maxwell-Boltzmann distribution. The Maxwell-Boltzmann distribution states that the probability of finding an electron with a velocity v is given by
$P(v) = \left(\dfrac{m}{2\pi kT}\right)^{3/2} v^2 e^{-\dfrac{mv^2}{2kT}}$
Now, using this distribution, we can find the mean velocity of free electrons as,
$\bar{v} = \sqrt{\dfrac{8kT}{\pi m}}$
Hence, we can see that the mean velocity of free electrons is directly proportional to $\sqrt T$.
Therefore, the correct option is B.
Note: The Maxwell-Boltzmann distribution describes the velocity distribution of particles in a gas. It is a statistical law that describes the probability of finding a particle with a certain velocity at a given temperature. A Point should be noted that, When all parameters are held equal, the greater the potential difference in the system, the greater the velocity of electrons flowing in a given material will be. The scalar quantity, in the situation of irrotational flow, whose negative gradient matches the velocity is the velocity potential.
Complete step by step solution:
We know that in a metallic block, the conduction of electricity is mainly due to the movement of free electrons. According to the kinetic theory of gases, the velocity distribution of free electrons in a metallic block follows the Maxwell-Boltzmann distribution. The Maxwell-Boltzmann distribution states that the probability of finding an electron with a velocity v is given by
$P(v) = \left(\dfrac{m}{2\pi kT}\right)^{3/2} v^2 e^{-\dfrac{mv^2}{2kT}}$
Now, using this distribution, we can find the mean velocity of free electrons as,
$\bar{v} = \sqrt{\dfrac{8kT}{\pi m}}$
Hence, we can see that the mean velocity of free electrons is directly proportional to $\sqrt T$.
Therefore, the correct option is B.
Note: The Maxwell-Boltzmann distribution describes the velocity distribution of particles in a gas. It is a statistical law that describes the probability of finding a particle with a certain velocity at a given temperature. A Point should be noted that, When all parameters are held equal, the greater the potential difference in the system, the greater the velocity of electrons flowing in a given material will be. The scalar quantity, in the situation of irrotational flow, whose negative gradient matches the velocity is the velocity potential.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Charging and Discharging of Capacitor

Instantaneous Velocity - Formula based Examples for JEE

JEE Main Chemistry Question Paper with Answer Keys and Solutions

JEE Main Reservation Criteria 2025: SC, ST, EWS, and PwD Candidates

What is Normality in Chemistry?

Other Pages
Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks

NEET Marks vs Rank 2024|How to Calculate?

NEET 2025: All Major Changes in Application Process, Pattern and More
