Answer
Verified
87k+ views
Hint: The restoring torque is the torque that occurs to return a twisted or rotating object to its original orientation.
Calculate the moment of inertia in both cases given in the question and consider which one is greater. Note that, the angular frequency is inversely proportional to the moment of inertia.
Formula used:
The parallel axis theorem states,$I = {I_{cm}} + M{l^2}$
${I_{cm}} = $ moment of inertia about the axis,
$M = $ mass of the object,
$l = $ the distance between the two axes.
For this case \[A\], $I = \dfrac{1}{3}m{L^2} + M{L^2}$
For this case \[B\], $I = \dfrac{1}{3}m{L^2} + \dfrac{1}{2}m{R^2} + M{(L + R)^2}$
$M = $ mass of the disc and
$R = $radius of the disc.
$m = $mass of the rod
$L = $ length of the rod.
Complete step by step answer:
There are two cases in this problem,
In this case \[A\], the disc does not rotate about its axis, hence according to the parallel axis theorem [$I = {I_{cm}} + M{l^2}$ ] the moment of inertia will be ${I_A} = \dfrac{1}{3}m{L^2} + M{L^2}$.
$M$ is the mass of the disc, $m$ Is the mass of the rod, and $L$ is the length of the rod.
In this case \[B\], the disc is rotated about its axis, hence the moment of inertia will be
$\Rightarrow {I_B} = \dfrac{1}{3}m{L^2} + \dfrac{1}{2}m{R^2} + M{(L + R)^2}$
$R$ is the radius of the disc.
So, we can see that the moment of inertia in the case \[A\] is greater than the case \[B\]. Since the angular frequency is inversely proportional to the moment of inertia.
Hence, the angular frequency in the case \[A\] is less than the case \[B\].
The restoring torque is the same for both cases.
Hence, the correct answers in option $(A)$ and $(D)$.
Note: The restoring torque is the torque that occurs to return a twisted or rotating object to its original orientation.
So it does not matter whether the disc rotates or not about its axis to calculate the restoring torque.
Calculate the moment of inertia in both cases given in the question and consider which one is greater. Note that, the angular frequency is inversely proportional to the moment of inertia.
Formula used:
The parallel axis theorem states,$I = {I_{cm}} + M{l^2}$
${I_{cm}} = $ moment of inertia about the axis,
$M = $ mass of the object,
$l = $ the distance between the two axes.
For this case \[A\], $I = \dfrac{1}{3}m{L^2} + M{L^2}$
For this case \[B\], $I = \dfrac{1}{3}m{L^2} + \dfrac{1}{2}m{R^2} + M{(L + R)^2}$
$M = $ mass of the disc and
$R = $radius of the disc.
$m = $mass of the rod
$L = $ length of the rod.
Complete step by step answer:
There are two cases in this problem,
In this case \[A\], the disc does not rotate about its axis, hence according to the parallel axis theorem [$I = {I_{cm}} + M{l^2}$ ] the moment of inertia will be ${I_A} = \dfrac{1}{3}m{L^2} + M{L^2}$.
$M$ is the mass of the disc, $m$ Is the mass of the rod, and $L$ is the length of the rod.
In this case \[B\], the disc is rotated about its axis, hence the moment of inertia will be
$\Rightarrow {I_B} = \dfrac{1}{3}m{L^2} + \dfrac{1}{2}m{R^2} + M{(L + R)^2}$
$R$ is the radius of the disc.
So, we can see that the moment of inertia in the case \[A\] is greater than the case \[B\]. Since the angular frequency is inversely proportional to the moment of inertia.
Hence, the angular frequency in the case \[A\] is less than the case \[B\].
The restoring torque is the same for both cases.
Hence, the correct answers in option $(A)$ and $(D)$.
Note: The restoring torque is the torque that occurs to return a twisted or rotating object to its original orientation.
So it does not matter whether the disc rotates or not about its axis to calculate the restoring torque.
Recently Updated Pages
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main
A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main
Other Pages
A pilot in a plane wants to go 500km towards the north class 11 physics JEE_Main
A passenger in an aeroplane shall A Never see a rainbow class 12 physics JEE_Main
A circular hole of radius dfracR4 is made in a thin class 11 physics JEE_Main
The potential energy of a certain spring when stretched class 11 physics JEE_Main
The ratio of speed of sound in Hydrogen to that in class 11 physics JEE_MAIN
A roller of mass 300kg and of radius 50cm lying on class 12 physics JEE_Main