
A metal ball of radius $2mm$ and density $10.5{ g/c}{{{m}}^{3}}$ is dropped in a glycine of coefficient of velocity. $9.8$ paise and density $1.5{ g/c}{{{m}}^{3}}$ The terminal velocity of the ball in ${cm/s}$ is:
A) $2$
B) $4$
C) $6$
D) $8$
Answer
214.5k+ views
Hint: Terminal velocity is the steady speed achieved by an object freely falling through a gas or liquid. After some time the velocity of the ball will become constant and will not change.
Formula used:
Terminal velocity
$V=\dfrac{2g{{r}^{2}}\left( T-\sigma \right)}{9\eta }$
Where $V$ is velocity, $g$ is specific gravity, $r$ is radius, $T$ is density of metal, $\sigma $is density of glycerine, $\eta $ is coefficient of velocity.
Complete solution:
When a metal ball is falling freely the initial velocity is zero there is final velocity as the energy is always conserved. Thus initially there is only potential energy which by the end of the motion gets converted to kinetic energy. No other force except self weight of the ball is acting in this case so there is a constant acceleration due to gravity.
However, when the body is falling freely in a liquid or gas medium there is a buoyant force that will act on the body and as result there will be an acceleration due this force.So the velocity will keep on changing until there comes a point when the accelerations will be balanced. That is the point when the ball will acquire a steady velocity known as the terminal velocity.
We are given that;
$\Rightarrow r=2mm=0.2m$
$\Rightarrow T=10.5{ g/c}{{{m}}^{3}}$
$\Rightarrow \sigma =1.5{ g/c}{{{m}}^{3}}$
$\Rightarrow \eta =9.8{ paise}$
So applying the formula and substituting the values we get;
$\Rightarrow V=2g{{r}^{2}}\dfrac{\left( T-\sigma \right)}{9\eta }=\dfrac{2\times {{0.2}^{2}}\times \left( 10.5-15 \right){ cm/s}}{9\times 9.8}$
$\Rightarrow V=8{ cm/s}$
Hence option (D) is the correct answer.
Note: When the temperature is increased its density decreases, thus the fluid becomes less viscous. When terminal velocity is reached the downward force of gravity is equal to the sum of object buoyancy and drug force.
Formula used:
Terminal velocity
$V=\dfrac{2g{{r}^{2}}\left( T-\sigma \right)}{9\eta }$
Where $V$ is velocity, $g$ is specific gravity, $r$ is radius, $T$ is density of metal, $\sigma $is density of glycerine, $\eta $ is coefficient of velocity.
Complete solution:
When a metal ball is falling freely the initial velocity is zero there is final velocity as the energy is always conserved. Thus initially there is only potential energy which by the end of the motion gets converted to kinetic energy. No other force except self weight of the ball is acting in this case so there is a constant acceleration due to gravity.
However, when the body is falling freely in a liquid or gas medium there is a buoyant force that will act on the body and as result there will be an acceleration due this force.So the velocity will keep on changing until there comes a point when the accelerations will be balanced. That is the point when the ball will acquire a steady velocity known as the terminal velocity.
We are given that;
$\Rightarrow r=2mm=0.2m$
$\Rightarrow T=10.5{ g/c}{{{m}}^{3}}$
$\Rightarrow \sigma =1.5{ g/c}{{{m}}^{3}}$
$\Rightarrow \eta =9.8{ paise}$
So applying the formula and substituting the values we get;
$\Rightarrow V=2g{{r}^{2}}\dfrac{\left( T-\sigma \right)}{9\eta }=\dfrac{2\times {{0.2}^{2}}\times \left( 10.5-15 \right){ cm/s}}{9\times 9.8}$
$\Rightarrow V=8{ cm/s}$
Hence option (D) is the correct answer.
Note: When the temperature is increased its density decreases, thus the fluid becomes less viscous. When terminal velocity is reached the downward force of gravity is equal to the sum of object buoyancy and drug force.
Recently Updated Pages
Chemical Equation - Important Concepts and Tips for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

Conduction, Transfer of Energy Important Concepts and Tips for JEE

JEE Analytical Method of Vector Addition Important Concepts and Tips

Atomic Size - Important Concepts and Tips for JEE

JEE Main 2022 (June 29th Shift 1) Maths Question Paper with Answer Key

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Equation of Trajectory in Projectile Motion: Derivation & Proof

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Hybridisation in Chemistry – Concept, Types & Applications

Angle of Deviation in a Prism – Formula, Diagram & Applications

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

Collision: Meaning, Types & Examples in Physics

