
A metal ball of radius $2mm$ and density $10.5{ g/c}{{{m}}^{3}}$ is dropped in a glycine of coefficient of velocity. $9.8$ paise and density $1.5{ g/c}{{{m}}^{3}}$ The terminal velocity of the ball in ${cm/s}$ is:
A) $2$
B) $4$
C) $6$
D) $8$
Answer
232.8k+ views
Hint: Terminal velocity is the steady speed achieved by an object freely falling through a gas or liquid. After some time the velocity of the ball will become constant and will not change.
Formula used:
Terminal velocity
$V=\dfrac{2g{{r}^{2}}\left( T-\sigma \right)}{9\eta }$
Where $V$ is velocity, $g$ is specific gravity, $r$ is radius, $T$ is density of metal, $\sigma $is density of glycerine, $\eta $ is coefficient of velocity.
Complete solution:
When a metal ball is falling freely the initial velocity is zero there is final velocity as the energy is always conserved. Thus initially there is only potential energy which by the end of the motion gets converted to kinetic energy. No other force except self weight of the ball is acting in this case so there is a constant acceleration due to gravity.
However, when the body is falling freely in a liquid or gas medium there is a buoyant force that will act on the body and as result there will be an acceleration due this force.So the velocity will keep on changing until there comes a point when the accelerations will be balanced. That is the point when the ball will acquire a steady velocity known as the terminal velocity.
We are given that;
$\Rightarrow r=2mm=0.2m$
$\Rightarrow T=10.5{ g/c}{{{m}}^{3}}$
$\Rightarrow \sigma =1.5{ g/c}{{{m}}^{3}}$
$\Rightarrow \eta =9.8{ paise}$
So applying the formula and substituting the values we get;
$\Rightarrow V=2g{{r}^{2}}\dfrac{\left( T-\sigma \right)}{9\eta }=\dfrac{2\times {{0.2}^{2}}\times \left( 10.5-15 \right){ cm/s}}{9\times 9.8}$
$\Rightarrow V=8{ cm/s}$
Hence option (D) is the correct answer.
Note: When the temperature is increased its density decreases, thus the fluid becomes less viscous. When terminal velocity is reached the downward force of gravity is equal to the sum of object buoyancy and drug force.
Formula used:
Terminal velocity
$V=\dfrac{2g{{r}^{2}}\left( T-\sigma \right)}{9\eta }$
Where $V$ is velocity, $g$ is specific gravity, $r$ is radius, $T$ is density of metal, $\sigma $is density of glycerine, $\eta $ is coefficient of velocity.
Complete solution:
When a metal ball is falling freely the initial velocity is zero there is final velocity as the energy is always conserved. Thus initially there is only potential energy which by the end of the motion gets converted to kinetic energy. No other force except self weight of the ball is acting in this case so there is a constant acceleration due to gravity.
However, when the body is falling freely in a liquid or gas medium there is a buoyant force that will act on the body and as result there will be an acceleration due this force.So the velocity will keep on changing until there comes a point when the accelerations will be balanced. That is the point when the ball will acquire a steady velocity known as the terminal velocity.
We are given that;
$\Rightarrow r=2mm=0.2m$
$\Rightarrow T=10.5{ g/c}{{{m}}^{3}}$
$\Rightarrow \sigma =1.5{ g/c}{{{m}}^{3}}$
$\Rightarrow \eta =9.8{ paise}$
So applying the formula and substituting the values we get;
$\Rightarrow V=2g{{r}^{2}}\dfrac{\left( T-\sigma \right)}{9\eta }=\dfrac{2\times {{0.2}^{2}}\times \left( 10.5-15 \right){ cm/s}}{9\times 9.8}$
$\Rightarrow V=8{ cm/s}$
Hence option (D) is the correct answer.
Note: When the temperature is increased its density decreases, thus the fluid becomes less viscous. When terminal velocity is reached the downward force of gravity is equal to the sum of object buoyancy and drug force.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Uniform Acceleration in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

