
A mass m performs oscillations of period T when hanged by spring of force constant K. If spring is cut in two parts and arranged in parallel and same mass is oscillated by them, then the new time period will be

Figure: The spring-mass system
A. \[2T\]
B. \[T\]
C. \[\dfrac{T}{{\sqrt 2 }}\]
D. \[\dfrac{T}{2}\]
Answer
163.2k+ views
Hint: The spring constant of the spring is inversely proportional to the length of the spring. If the same spring is divided into smaller spring lengths then the resulting spring will have more stiffness than the original one. We find the equivalent stiffness of the combination then use it in the formula of the period of spring-mass system.
Formula used:
\[T = 2\pi \sqrt {\dfrac{m}{k}} \]
Where T is the period, k is the spring constant and m is the mass of the block.
Complete step by step solution:

Figure: The spring-mass system
For the initial case, using period formula,
\[T = 2\pi \sqrt {\dfrac{m}{k}} \]
As we know that the spring constant of the spring is inversely proportional to the length of the spring, so when the spring is divided into two equal parts, then the spring constant of each equal parts will be twice of the original spring.
It is given that the spring constant of original spring is k, so the spring constant of each part will be 2k. Then, the equivalent spring constant in parallel is,
\[{K_{eq}} = 2k + 2k = 4k\]
So, the final period of the system will be,
\[{T_2} = 2\pi \sqrt {\dfrac{m}{{4K}}} \]
\[{T_2} = \dfrac{1}{2}\left( {2\pi \sqrt {\dfrac{m}{k}} } \right)\]
On dividing the expression for the periods, we get
\[\dfrac{T}{{{T_2}}} = \dfrac{{\left( {2\pi \sqrt {\dfrac{m}{k}} } \right)}}{{\dfrac{1}{2}\left( {2\pi \sqrt {\dfrac{m}{k}} } \right)}}\]
\[\dfrac{T}{{{T_2}}} = 2\]
\[{T_2} = \dfrac{T}{2}\]
So, the period of the new spring-mass system is half of the initial period.
Therefore, the correct option is (D).
Note: We should assume that the spring’s mass is negligible in relative to the mass suspended through the spring. Otherwise the motion of the block will not be perfect simple harmonic.
Formula used:
\[T = 2\pi \sqrt {\dfrac{m}{k}} \]
Where T is the period, k is the spring constant and m is the mass of the block.
Complete step by step solution:

Figure: The spring-mass system
For the initial case, using period formula,
\[T = 2\pi \sqrt {\dfrac{m}{k}} \]
As we know that the spring constant of the spring is inversely proportional to the length of the spring, so when the spring is divided into two equal parts, then the spring constant of each equal parts will be twice of the original spring.
It is given that the spring constant of original spring is k, so the spring constant of each part will be 2k. Then, the equivalent spring constant in parallel is,
\[{K_{eq}} = 2k + 2k = 4k\]
So, the final period of the system will be,
\[{T_2} = 2\pi \sqrt {\dfrac{m}{{4K}}} \]
\[{T_2} = \dfrac{1}{2}\left( {2\pi \sqrt {\dfrac{m}{k}} } \right)\]
On dividing the expression for the periods, we get
\[\dfrac{T}{{{T_2}}} = \dfrac{{\left( {2\pi \sqrt {\dfrac{m}{k}} } \right)}}{{\dfrac{1}{2}\left( {2\pi \sqrt {\dfrac{m}{k}} } \right)}}\]
\[\dfrac{T}{{{T_2}}} = 2\]
\[{T_2} = \dfrac{T}{2}\]
So, the period of the new spring-mass system is half of the initial period.
Therefore, the correct option is (D).
Note: We should assume that the spring’s mass is negligible in relative to the mass suspended through the spring. Otherwise the motion of the block will not be perfect simple harmonic.
Recently Updated Pages
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Charging and Discharging of Capacitor

Instantaneous Velocity - Formula based Examples for JEE

JEE Main Chemistry Question Paper with Answer Keys and Solutions

JEE Main Reservation Criteria 2025: SC, ST, EWS, and PwD Candidates

What is Normality in Chemistry?

Other Pages
Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks

NEET Marks vs Rank 2024|How to Calculate?

NEET 2025: All Major Changes in Application Process, Pattern and More
