
A mass m performs oscillations of period T when hanged by spring of force constant K. If spring is cut in two parts and arranged in parallel and same mass is oscillated by them, then the new time period will be

Figure: The spring-mass system
A. \[2T\]
B. \[T\]
C. \[\dfrac{T}{{\sqrt 2 }}\]
D. \[\dfrac{T}{2}\]
Answer
232.8k+ views
Hint: The spring constant of the spring is inversely proportional to the length of the spring. If the same spring is divided into smaller spring lengths then the resulting spring will have more stiffness than the original one. We find the equivalent stiffness of the combination then use it in the formula of the period of spring-mass system.
Formula used:
\[T = 2\pi \sqrt {\dfrac{m}{k}} \]
Where T is the period, k is the spring constant and m is the mass of the block.
Complete step by step solution:

Figure: The spring-mass system
For the initial case, using period formula,
\[T = 2\pi \sqrt {\dfrac{m}{k}} \]
As we know that the spring constant of the spring is inversely proportional to the length of the spring, so when the spring is divided into two equal parts, then the spring constant of each equal parts will be twice of the original spring.
It is given that the spring constant of original spring is k, so the spring constant of each part will be 2k. Then, the equivalent spring constant in parallel is,
\[{K_{eq}} = 2k + 2k = 4k\]
So, the final period of the system will be,
\[{T_2} = 2\pi \sqrt {\dfrac{m}{{4K}}} \]
\[{T_2} = \dfrac{1}{2}\left( {2\pi \sqrt {\dfrac{m}{k}} } \right)\]
On dividing the expression for the periods, we get
\[\dfrac{T}{{{T_2}}} = \dfrac{{\left( {2\pi \sqrt {\dfrac{m}{k}} } \right)}}{{\dfrac{1}{2}\left( {2\pi \sqrt {\dfrac{m}{k}} } \right)}}\]
\[\dfrac{T}{{{T_2}}} = 2\]
\[{T_2} = \dfrac{T}{2}\]
So, the period of the new spring-mass system is half of the initial period.
Therefore, the correct option is (D).
Note: We should assume that the spring’s mass is negligible in relative to the mass suspended through the spring. Otherwise the motion of the block will not be perfect simple harmonic.
Formula used:
\[T = 2\pi \sqrt {\dfrac{m}{k}} \]
Where T is the period, k is the spring constant and m is the mass of the block.
Complete step by step solution:

Figure: The spring-mass system
For the initial case, using period formula,
\[T = 2\pi \sqrt {\dfrac{m}{k}} \]
As we know that the spring constant of the spring is inversely proportional to the length of the spring, so when the spring is divided into two equal parts, then the spring constant of each equal parts will be twice of the original spring.
It is given that the spring constant of original spring is k, so the spring constant of each part will be 2k. Then, the equivalent spring constant in parallel is,
\[{K_{eq}} = 2k + 2k = 4k\]
So, the final period of the system will be,
\[{T_2} = 2\pi \sqrt {\dfrac{m}{{4K}}} \]
\[{T_2} = \dfrac{1}{2}\left( {2\pi \sqrt {\dfrac{m}{k}} } \right)\]
On dividing the expression for the periods, we get
\[\dfrac{T}{{{T_2}}} = \dfrac{{\left( {2\pi \sqrt {\dfrac{m}{k}} } \right)}}{{\dfrac{1}{2}\left( {2\pi \sqrt {\dfrac{m}{k}} } \right)}}\]
\[\dfrac{T}{{{T_2}}} = 2\]
\[{T_2} = \dfrac{T}{2}\]
So, the period of the new spring-mass system is half of the initial period.
Therefore, the correct option is (D).
Note: We should assume that the spring’s mass is negligible in relative to the mass suspended through the spring. Otherwise the motion of the block will not be perfect simple harmonic.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Uniform Acceleration in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

