
A mass M is suspended by two springs of force constants \[{K_1}\] and \[{K_2}\] respectively as shown in the diagram. The total elongation (stretch) of the two springs is

A. \[\dfrac{{Mg}}{{{K_1} + {K_2}}} \\ \]
B. \[\dfrac{{Mg\left( {{K_1} + {K_2}} \right)}}{{{K_1}{K_2}}} \\ \]
C. \[\dfrac{{Mg\left( {{K_1}{K_2}} \right)}}{{{K_1} + {K_2}}} \\ \]
D. \[\dfrac{{{K_1} + {K_2}}}{{{K_1}{K_2}Mg}}\]
Answer
124.2k+ views
Hint: Force on the system will be a product of effective constant for the series combination and elongation in the spring.
Formula used:
The expression of restoring force is,
\[F = Kx\]
Where, F = Force, k= Spring constant and x = Elongation (stretch) of the spring.
Complete step by step solution:
Given here is a spring mass system of two springs having constant \[{K_1}\] and \[{K_2}\] respectively. Springs are combined together in series combination and a mass M is suspended by the springs, we have to find the elongation in springs.
First we need to find the effective constant for the given combination of springs and it will be,
\[{K_{eff}} = \dfrac{{{K_1}{K_2}}}{{{K_1} + {K_2}}}\,.........(1)\]
Let the elongation in spring be x then free body diagram of suspended mass M will be,

Image: Free body diagram of mass M
From free body diagram we have,
\[{K_{eff}}x = Mg \\
\Rightarrow x = \dfrac{{Mg}}{{{K_{eff}}}}\,.......(2)\]
Substituting value of \[{K_{eff}}\] form equation (1) in equation (2) we get,
\[x = \dfrac{{Mg\left( {{K_1} + {K_2}} \right)}}{{{K_1}{K_2}}}\,\]
Hence, elongation in the spring will be \[\dfrac{{Mg\left( {{K_1} + {K_2}} \right)}}{{{K_1}{K_2}}}\,\].
Therefore, option B is the correct answer.
Note: Even though in combination of springs we have multiple springs connected to each other either in series or parallel, they behave like a single spring and to solve numerical problems for combination of springs their effective constant is to be calculated first.
Formula used:
The expression of restoring force is,
\[F = Kx\]
Where, F = Force, k= Spring constant and x = Elongation (stretch) of the spring.
Complete step by step solution:
Given here is a spring mass system of two springs having constant \[{K_1}\] and \[{K_2}\] respectively. Springs are combined together in series combination and a mass M is suspended by the springs, we have to find the elongation in springs.
First we need to find the effective constant for the given combination of springs and it will be,
\[{K_{eff}} = \dfrac{{{K_1}{K_2}}}{{{K_1} + {K_2}}}\,.........(1)\]
Let the elongation in spring be x then free body diagram of suspended mass M will be,

Image: Free body diagram of mass M
From free body diagram we have,
\[{K_{eff}}x = Mg \\
\Rightarrow x = \dfrac{{Mg}}{{{K_{eff}}}}\,.......(2)\]
Substituting value of \[{K_{eff}}\] form equation (1) in equation (2) we get,
\[x = \dfrac{{Mg\left( {{K_1} + {K_2}} \right)}}{{{K_1}{K_2}}}\,\]
Hence, elongation in the spring will be \[\dfrac{{Mg\left( {{K_1} + {K_2}} \right)}}{{{K_1}{K_2}}}\,\].
Therefore, option B is the correct answer.
Note: Even though in combination of springs we have multiple springs connected to each other either in series or parallel, they behave like a single spring and to solve numerical problems for combination of springs their effective constant is to be calculated first.
Recently Updated Pages
Difference Between Circuit Switching and Packet Switching

Difference Between Mass and Weight

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main 2025 Helpline Numbers - Center Contact, Phone Number, Address

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More

Class 11 JEE Main Physics Mock Test 2025

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
