
A man wants to reach point B on the opposite bank of a river flowing at a speed $u$ as shown in figure, At What minimum speed relative to water should the man have so that he can reach point B? In which direction should I swim?

Answer
126.9k+ views
Hint: The proceeding approach will be the relative motion concept. We going to assume boatman’s velocity with respect to water So that it will become easy to examine boatman’s motion in water
Before proceeding student must know what does relative approach mean, In most simple words, Relative motion is the understanding of the motion of an object with respect to some other moving or stationary object, for example a person is sitting in the moving bus is at zero velocity relative to the bus, is moving at the same velocity as the bus with respect to the ground.
Complete step by step solution:
According to the question given we have to find the minimum speed so that the boatman will reach at point B starting from A.
Let v be the velocity of a boatman with respect to water or velocity in still water, u is the velocity of water.
Resultant of v and u should be along AB.
Let the absolute velocity of boatman (velocity with respect to ground) be $v_b^ \to $ which is along AB
So, the resultant of u and $v_b^ \to $ should be along AB
Let us resolve component of v along x and y direction
Where ${v_x}$ and ${v_y}$ be the components along Horizontal and vertical directions respectively
So, coming to the calculation part
$\Rightarrow {v_x}$$ = u - v\sin \theta $
$\Rightarrow {v_y} = v\cos \theta $
Further $\tan \theta = \dfrac{{perpendicular}}{{base}} = \dfrac{{{v_y}}}{{{v_x}}}$
So, $\tan 45$
$
\Rightarrow \dfrac{{v\cos \theta }}{{u - v\sin \theta }} = 1\,\,\,\,\,\,\,\,(\tan 45 = 1) \\
\Rightarrow v\cos \theta = u - v\sin \theta \\
\therefore v = \dfrac{u}{{\sin \theta + \cos \theta }} \\
\Rightarrow v = \dfrac{u}{{\sqrt 2 \sin (\theta + 45)}} \\
$
So, v is minimum when the denominator is maximum, In denominator we have sin whose maximum value is 1.
$
\Rightarrow \theta + 45 = 90 \\
\Rightarrow \theta = {45^o} \\
$
And, $v = \dfrac{u}{{\sqrt 2 }}$
Speed relative to water is $\dfrac{u}{{\sqrt 2 }}$.
Direction is 45 degrees to the north west.
Note: The question above is for minimum speeds but for minimum distance we should move in such a direction that our motion will become along AC relative to water and for minimum time motion will be along AC direct.
Before proceeding student must know what does relative approach mean, In most simple words, Relative motion is the understanding of the motion of an object with respect to some other moving or stationary object, for example a person is sitting in the moving bus is at zero velocity relative to the bus, is moving at the same velocity as the bus with respect to the ground.
Complete step by step solution:
According to the question given we have to find the minimum speed so that the boatman will reach at point B starting from A.
Let v be the velocity of a boatman with respect to water or velocity in still water, u is the velocity of water.
Resultant of v and u should be along AB.
Let the absolute velocity of boatman (velocity with respect to ground) be $v_b^ \to $ which is along AB
So, the resultant of u and $v_b^ \to $ should be along AB
Let us resolve component of v along x and y direction
Where ${v_x}$ and ${v_y}$ be the components along Horizontal and vertical directions respectively
So, coming to the calculation part
$\Rightarrow {v_x}$$ = u - v\sin \theta $
$\Rightarrow {v_y} = v\cos \theta $
Further $\tan \theta = \dfrac{{perpendicular}}{{base}} = \dfrac{{{v_y}}}{{{v_x}}}$
So, $\tan 45$
$
\Rightarrow \dfrac{{v\cos \theta }}{{u - v\sin \theta }} = 1\,\,\,\,\,\,\,\,(\tan 45 = 1) \\
\Rightarrow v\cos \theta = u - v\sin \theta \\
\therefore v = \dfrac{u}{{\sin \theta + \cos \theta }} \\
\Rightarrow v = \dfrac{u}{{\sqrt 2 \sin (\theta + 45)}} \\
$
So, v is minimum when the denominator is maximum, In denominator we have sin whose maximum value is 1.
$
\Rightarrow \theta + 45 = 90 \\
\Rightarrow \theta = {45^o} \\
$
And, $v = \dfrac{u}{{\sqrt 2 }}$
Speed relative to water is $\dfrac{u}{{\sqrt 2 }}$.
Direction is 45 degrees to the north west.
Note: The question above is for minimum speeds but for minimum distance we should move in such a direction that our motion will become along AC relative to water and for minimum time motion will be along AC direct.
Recently Updated Pages
JEE Main 2025 - Session 2 Registration Open | Exam Dates, Answer Key, PDF

Wheatstone Bridge - Working Principle, Formula, Derivation, Application

Young's Double Slit Experiment Step by Step Derivation

JEE Main 2023 (April 8th Shift 2) Physics Question Paper with Answer Key

JEE Main 2023 (January 30th Shift 2) Maths Question Paper with Answer Key

JEE Main 2022 (July 25th Shift 2) Physics Question Paper with Answer Key

Trending doubts
JEE Main Login 2045: Step-by-Step Instructions and Details

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Formula for number of images formed by two plane mirrors class 12 physics JEE_Main

JEE Main Course 2025: Get All the Relevant Details

Elastic Collisions in One Dimension - JEE Important Topic

JEE Main Chemistry Question Paper with Answer Keys and Solutions

Ideal and Non-Ideal Solutions Raoult's Law - JEE
