
A man of mass $60\,\,Kg$ is standing on a weighing machine placed on ground. Calculate the reading of the machine. $\left( {g = 10\,\,m{s^{ - 2}}} \right)$

(A) $60\,\,N$
(B) $600\,\,N$
(C) $540\,\,N$
(D) $360\,\,N$
Answer
207.3k+ views
Hint: The given problem can be solved using one of the three laws that was proposed by Sir Isaac Newton, that is the formula derived from Newton's second law of motion which incorporates the mass of the man and the acceleration due the gravity.
The formula for finding the reading on the machine is given by the Newton’s second law of motion;
$W = mg$
Where, $W$ denotes the weight of the man standing on the weighing machine, $m$ denotes the mass of the man, $g$ denotes the acceleration due to gravity of the man on the weighing machine.
Complete step by step solution:
The data given in the problem are;
Mass of the man is, $m = 60\,\,Kg$,
Acceleration due to gravitational force, $g = 10\,\,m{s^{ - 2}}$.
The formula for reading on the machine is given as;
$W = mg$
That is,
Since the acceleration of the object is equal to the acceleration due to gravity.
$W = mg$,
Where, $g$ represents the acceleration due to gravity.
Substitute the values for the mass of the man standing on the weighing Machine and the acceleration due to the gravitational pull of earth that is acting on the man.
$\Rightarrow W = 60\,Kg \times 10\,m{s^{ - 2}}$
On simplifying the above equation, we get,
$\Rightarrow W = 600\,N$
Therefore, the reading on the machine when the man is standing on the weighing machine is $\Rightarrow F = 600\,\,N$.
Hence the option (B), $F = 600\,\,N$ is the correct answer.
Note: The value for the acceleration due to gravity is $g = 9.8\,\,m{s^{ - 2}}$, but we can round it off to the value of $g = 10\,\,m{s^{ - 2}}$, to keep the calculation difficulties to a minimum. In the above problem we use acceleration due to gravity, instead of acceleration because both of them are the same in case of gravitational force.
The formula for finding the reading on the machine is given by the Newton’s second law of motion;
$W = mg$
Where, $W$ denotes the weight of the man standing on the weighing machine, $m$ denotes the mass of the man, $g$ denotes the acceleration due to gravity of the man on the weighing machine.
Complete step by step solution:
The data given in the problem are;
Mass of the man is, $m = 60\,\,Kg$,
Acceleration due to gravitational force, $g = 10\,\,m{s^{ - 2}}$.
The formula for reading on the machine is given as;
$W = mg$
That is,
Since the acceleration of the object is equal to the acceleration due to gravity.
$W = mg$,
Where, $g$ represents the acceleration due to gravity.
Substitute the values for the mass of the man standing on the weighing Machine and the acceleration due to the gravitational pull of earth that is acting on the man.
$\Rightarrow W = 60\,Kg \times 10\,m{s^{ - 2}}$
On simplifying the above equation, we get,
$\Rightarrow W = 600\,N$
Therefore, the reading on the machine when the man is standing on the weighing machine is $\Rightarrow F = 600\,\,N$.
Hence the option (B), $F = 600\,\,N$ is the correct answer.
Note: The value for the acceleration due to gravity is $g = 9.8\,\,m{s^{ - 2}}$, but we can round it off to the value of $g = 10\,\,m{s^{ - 2}}$, to keep the calculation difficulties to a minimum. In the above problem we use acceleration due to gravity, instead of acceleration because both of them are the same in case of gravitational force.
Recently Updated Pages
JEE Main 2026 Cutoff Percentile: Rank Vs Percentile

JEE Main 2026 Session 1 Admit Card Release Date and Direct Download Link

JEE Main Exam Pattern 2026 - NTA Paper Pattern, Marking Scheme, Total Marks

JEE Main Slot Booking 2026 NTA Exam Slot Allotment Dates and Shifts

Self Declaration Form for JEE Mains 2026 - Mandatory Details and Filling Process

JEE Main 2026 Registration- Dates, Process, Documents, and Important Details

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026- Edit Form Details, Dates and Link

Atomic Structure: Definition, Models, and Examples

Equation of Trajectory in Projectile Motion: Derivation & Proof

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Angle of Deviation in a Prism – Formula, Diagram & Applications

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

Hybridisation in Chemistry – Concept, Types & Applications

