A man of \[50kg\] is standing at one end on a boat of length $25m$ and mass $200kg$. If he starts running and when he reaches the other end, he has a velocity $2m{s^{ - 1}}$ with respect to the boat. The final velocity of the boat is (in $m{s^{ - 1}}$).
A) $\dfrac{2}{5}$
B) $\dfrac{2}{3}$
C) $\dfrac{8}{5}$
D) $\dfrac{8}{3}$
Answer
Verified
118.5k+ views
Hint: The given question is based on conservation of momentum. So, in order to get the correct solution for the given question, we need to apply the conservation of momentum for the man and the boat after reaching the other end. After that we need to solve the equation to conclude with the correct solution.
Complete step by step solution:
The mass of the man in the question is given as, $m = 50kg$
The mass of the boat in the question is given as, $M = 200kg$
The velocity of the man after reaching the other end is given as, $v = 2m{s^{ - 1}}$
And let us assume the velocity of the boat after the man reaches the other end to be, $V$
According to the question initially both the man and the boat were at rest.
Now, applying the conservation of momentum, we get,
${P_1} = {P_2}$
We know that momentum can be written as, $P = mv$
Now, let us write the equation for the conservation of momentum for the given case.
So, we get,
$ \Rightarrow mv + (m + M)V = 0$
$ \Rightarrow 50 \times 2 + (50 + 200)V = 0$
$ \Rightarrow 100 + 250V = 0$
$ \Rightarrow 250V = 100$
$\therefore V = - \dfrac{{100}}{{250}} = - \dfrac{2}{5}m{s^{ - 1}}$
Here, a negative sign shows that the velocity of the man is in the opposite direction of the boat.
Therefore, the final velocity of the boat is $\dfrac{2}{5}m{s^{ - 1}}$.
Hence, option (A) is the correct choice for the given question.
Note: According to the conservation of momentum, the momentum before collision is equal to the momentum after collision. We define momentum as the product of mass and the velocity of a body. When the bodies are moving in a straight path, the momentum is said to be linear momentum.
Complete step by step solution:
The mass of the man in the question is given as, $m = 50kg$
The mass of the boat in the question is given as, $M = 200kg$
The velocity of the man after reaching the other end is given as, $v = 2m{s^{ - 1}}$
And let us assume the velocity of the boat after the man reaches the other end to be, $V$
According to the question initially both the man and the boat were at rest.
Now, applying the conservation of momentum, we get,
${P_1} = {P_2}$
We know that momentum can be written as, $P = mv$
Now, let us write the equation for the conservation of momentum for the given case.
So, we get,
$ \Rightarrow mv + (m + M)V = 0$
$ \Rightarrow 50 \times 2 + (50 + 200)V = 0$
$ \Rightarrow 100 + 250V = 0$
$ \Rightarrow 250V = 100$
$\therefore V = - \dfrac{{100}}{{250}} = - \dfrac{2}{5}m{s^{ - 1}}$
Here, a negative sign shows that the velocity of the man is in the opposite direction of the boat.
Therefore, the final velocity of the boat is $\dfrac{2}{5}m{s^{ - 1}}$.
Hence, option (A) is the correct choice for the given question.
Note: According to the conservation of momentum, the momentum before collision is equal to the momentum after collision. We define momentum as the product of mass and the velocity of a body. When the bodies are moving in a straight path, the momentum is said to be linear momentum.
Recently Updated Pages
Observed reading MSR + A MSD times LC B LC C VSD times class 11 physics JEE_Main
If a man is walking the direction of friction is equal class 11 physics JEE_Main
Three forces F1 F2 and F3 together keep a body is equilibrium class 11 physics JEE_Main
Assertion Two persons on the surface of the moon cannot class 11 physics JEE_Main
A bullet of mass 20g is fired from the rifle with a class 11 physics JEE_Main
Two open organ pipes of length 50 cm and 505 cm produce class 11 physics JEE_Main
Trending doubts
Free Radical Substitution Mechanism of Alkanes for JEE Main 2025
Electron Gain Enthalpy and Electron Affinity for JEE
Collision - Important Concepts and Tips for JEE
JEE Main Chemistry Exam Pattern 2025
The diagram given shows how the net interaction force class 11 physics JEE_Main
An Lshaped glass tube is just immersed in flowing water class 11 physics JEE_Main
Other Pages
NCERT Solutions for Class 11 Physics Chapter 4 Laws of Motion
NCERT Solutions for Class 11 Physics Chapter 3 Motion In A Plane
NCERT Solutions for Class 11 Physics Chapter 13 Oscillations
Find the current in wire AB class 11 physics JEE_Main
JEE Main 2023 January 25 Shift 1 Question Paper with Answer Keys & Solutions
Thermodynamics Class 11 Notes CBSE Physics Chapter 11 (Free PDF Download)