
A magnetizing force of $360A{m^{ - 1}}$ produces a magnetic flux density of 0.6T in a ferromagnetic material. The susceptibility of the material is:
$
(a){\text{ 1625}} \\
(b){\text{ 1329}} \\
(c){\text{ 2105}} \\
(d){\text{ 1914}} \\
$
Answer
232.8k+ views
Hint – In this question use the direct relationship between magnetization force and magnetic flux density that is $B = {\mu _o}\left( {H + M} \right)$, where B is the magnetic flux density, H is magnetizing force, $\chi $is magnetic susceptibility and is magnetic vacuum permeability.
Complete step-by-step answer:
Given data:
Magnetization force (H) = 360 A/m.
Magnetic flux density (B) = 0.6 T
Now as we know the relation between magnetization force and magnetic flux density which is given as,
$ \Rightarrow B = {\mu _o}\left( {H + M} \right)$................ (1), where ${\mu _o} = $vacuum permeability = $4\pi \times {10^{ - 7}}$(H/m), and M = magnetization of ferromagnetic material in (A/m).
Now as we know that magnetization is susceptibility ($\chi $) time’s magnetic field strength.
$ \Rightarrow M = \chi H$, both M and H have equal units therefore $\chi $ has dimensionless.
Now substitute this value in equation (1) we have,
$ \Rightarrow B = {\mu _o}\left( {H + \chi H} \right)$
\[ \Rightarrow 0.6 = \left( {4\pi \times {{10}^{ - 7}}} \right)\left( {360 + 360\chi } \right)\]
\[ \Rightarrow 1 + \chi = \dfrac{{0.6}}{{\left( {4\pi \times {{10}^{ - 7}}} \right) \times 360}}\]
\[ \Rightarrow \chi = \dfrac{{0.6}}{{\left( {4 \times \dfrac{{22}}{7} \times {{10}^{ - 7}}} \right) \times 360}} - 1\] $\left[ {\because \pi = \dfrac{{22}}{7}} \right]$
\[ \Rightarrow \chi = \dfrac{{0.6}}{{\left( {4 \times \dfrac{{22}}{7} \times {{10}^{ - 7}}} \right) \times 360}} - 1 = 1325.75 - 1\]
\[ \Rightarrow \chi = 1324.75 \simeq 1329\]
So this is the required answer.
Hence option (B) is the correct answer.
Note – When a material is placed in a magnetic field it tends to get magnetized, so magnetic susceptibility is the measure of how much an object in that field will be able to get magnetized. Magnetic susceptibility may also be written as $\dfrac{M}{H}$ where M is the magnetic moment per unit volume and where H is the intensity of the magnetizing field.
Complete step-by-step answer:
Given data:
Magnetization force (H) = 360 A/m.
Magnetic flux density (B) = 0.6 T
Now as we know the relation between magnetization force and magnetic flux density which is given as,
$ \Rightarrow B = {\mu _o}\left( {H + M} \right)$................ (1), where ${\mu _o} = $vacuum permeability = $4\pi \times {10^{ - 7}}$(H/m), and M = magnetization of ferromagnetic material in (A/m).
Now as we know that magnetization is susceptibility ($\chi $) time’s magnetic field strength.
$ \Rightarrow M = \chi H$, both M and H have equal units therefore $\chi $ has dimensionless.
Now substitute this value in equation (1) we have,
$ \Rightarrow B = {\mu _o}\left( {H + \chi H} \right)$
\[ \Rightarrow 0.6 = \left( {4\pi \times {{10}^{ - 7}}} \right)\left( {360 + 360\chi } \right)\]
\[ \Rightarrow 1 + \chi = \dfrac{{0.6}}{{\left( {4\pi \times {{10}^{ - 7}}} \right) \times 360}}\]
\[ \Rightarrow \chi = \dfrac{{0.6}}{{\left( {4 \times \dfrac{{22}}{7} \times {{10}^{ - 7}}} \right) \times 360}} - 1\] $\left[ {\because \pi = \dfrac{{22}}{7}} \right]$
\[ \Rightarrow \chi = \dfrac{{0.6}}{{\left( {4 \times \dfrac{{22}}{7} \times {{10}^{ - 7}}} \right) \times 360}} - 1 = 1325.75 - 1\]
\[ \Rightarrow \chi = 1324.75 \simeq 1329\]
So this is the required answer.
Hence option (B) is the correct answer.
Note – When a material is placed in a magnetic field it tends to get magnetized, so magnetic susceptibility is the measure of how much an object in that field will be able to get magnetized. Magnetic susceptibility may also be written as $\dfrac{M}{H}$ where M is the magnetic moment per unit volume and where H is the intensity of the magnetizing field.
Recently Updated Pages
Circuit Switching vs Packet Switching: Key Differences Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Understanding Uniform Acceleration in Physics

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

