
A machine gun is mounted on the top of a tower \[100m\] high. At what angle should the gun be inclined to cover a maximum range of firing on the ground below? The muzzle speed of the bullet is \[150m/s\]. Take \[g = 10m{s^{ - 2}}\]
Answer
218.7k+ views
Hint: The motion of the bullet is a projectile motion. Find the locus of the projectile and simplify to get a clear relation between the angle and the height of the tower and the velocity of the bullet. Put the values that are given in the problem and find the angle.
Formula used:
Complete step by step answer:
Formula used:
\[y = x\tan \theta - \dfrac{{g{x^2}}}{{2{u^2}{{\cos }^2}\theta }}\]
\[y = \] vertical position = the height of the tower.
\[x = \] horizontal position = the maximum range of firing.
\[u = \] Initial velocity or the muzzle speed of the bullet.
\[g = \] acceleration due to gravity.
\[\theta = \] the angle of the initial velocity from the horizontal plane (radians or degrees)
Complete step by step answer:
Let us consider a frame of reference where the positive y-axis is extended vertically and the positive x-axis is along with the projectile velocity horizontally. The main point is the projection point. The locus of the projectile is given by,
\[y = x\tan \theta - \dfrac{{g{x^2}}}{{2{u^2}{{\cos }^2}\theta }}...............(1)\]
\[y = \] vertical position = the height of the tower = $ - h$ (negative sign implies the opposite direction)
\[x = \] horizontal position = the maximum range of firing = $R$
\[u = \] initial velocity or the muzzle speed of the bullet
\[g = \] acceleration due to gravity
\[\theta = \] the angle of the initial velocity from the horizontal plane (radians or degrees)
So, eq. (1) can be written as
\[\Rightarrow - h = R\tan \theta - \dfrac{{g{R^2}}}{{2{u^2}{{\cos }^2}\theta }}\]
\[ \Rightarrow h = - R\tan \theta + \dfrac{{g{R^2}}}{{2{u^2}}}{\sec ^2}\theta \]
Differentiating w.r.t \[\theta \] ,
\[\Rightarrow 0 = - R{\sec ^2}\theta - \tan \theta \dfrac{{dR}}{{d\theta }} + \dfrac{{gR}}{{2{u^2}}}{\sec ^2}\theta + g\dfrac{{{{\sec }^2}\theta }}{{2{u^2}}}2R\dfrac{{dR}}{{d\theta }}..........(2)\]
Since we need the maximum range,
\[\Rightarrow \dfrac{{dR}}{{d\theta }} = 0\]
\[ \Rightarrow R = \dfrac{{{u^2}}}{{g\tan \theta }}\]
Putting these values in (2) we get,
\[\Rightarrow h = \dfrac{{ - {u^2}}}{g} + \dfrac{{g{{\sec }^2}\theta }}{{2{u^2}}} \times \dfrac{{{u^4}}}{{{g^2}{{\tan }^2}\theta }}\]
\[\Rightarrow \sin \theta = \sqrt {\dfrac{{{u^2}}}{{2({u^2} + gh)}}} ..................(3)\]
Given, $u = 150\,m/s$
$\Rightarrow g = 10\,m/{s^2}$
$\Rightarrow h = 100\,m$
\[\Rightarrow \sqrt {\dfrac{{{u^2}}}{{2({u^2} + gh)}}} = \sqrt {\dfrac{{{{150}^2}}}{{2({{150}^2} + 10 \times 100)}}} \]
$ \Rightarrow 0.691$
Put this value in equation (3) we get,
\[\Rightarrow \sin \theta = 0.691\]
$ \therefore \theta = 43.70$
So, the gun is inclined to cover a maximum range of firing on the ground below at an angle $\theta = 43.70^\circ $.
Note: The locus of the projectile is given by,\[y = x\tan \theta - \dfrac{{g{x^2}}}{{2{u^2}{{\cos }^2}\theta }}\]
This equation is in terms of $y = a x + b{x^2}$. This equation is the equation of the locus of a parabola. So we must include that the locus of a projectile is Parabolic.
Recently Updated Pages
Two discs which are rotating about their respective class 11 physics JEE_Main

A ladder rests against a frictionless vertical wall class 11 physics JEE_Main

Two simple pendulums of lengths 1 m and 16 m respectively class 11 physics JEE_Main

The slopes of isothermal and adiabatic curves are related class 11 physics JEE_Main

A trolly falling freely on an inclined plane as shown class 11 physics JEE_Main

The masses M1 and M2M2 M1 are released from rest Using class 11 physics JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Understanding Uniform Acceleration in Physics

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

Understanding Atomic Structure for Beginners

