Answer
Verified
98.1k+ views
Hint: The dot is invisible, due to the phenomenon of total internal reflection. Total internal reflection takes place when the angle of incidence exceeds the critical angle.
Complete step by step answer:
Let us understand the concept of total internal Reflection from the following definitions:
The phenomenon of reflection of total light when the light travelling in a denser medium strikes the interface separating the denser and the rarer medium at an angle greater than the critical angle, this is referred to as total internal reflection.
Now, we come across a term, critical angle. This critical angle is the angle of incidence in the denser medium, for which the angle of refraction in the rarer medium becomes\[{90^o}\] .
Now coming to the question, it is given that:
Height of the jar=h
Refractive index of the transparent medium is =\[\mu \]
We need to find the diameter of the ring, which when placed symmetrically on the top surface, the dot O at the bottom surface becomes invisible.
In order to make the dot invisible, rays marked OA and OB must suffer total internal Reflection.
Let \[\angle AOC\] be the angle of incidence marked as I in the diagram.
In\[\Delta AOC\] :
\[\tan i = \dfrac{{AC}}{{OC}} = \dfrac{{d/2}}{h}\]
Now, we know, for total internal reflection to occur, \[\angle i \geqslant \angle c\]
So, \[\sin i = \sin c\]
Applying Snell’s law:
We know,
\[\dfrac{{\sin i}}{{\sin r}} = \mu \]
Where, r= angle of refraction, which is \[{90^o}\] .
We know, if refractive index of media a with respect to b (air to water) is denoted by\[\mu \], then refractive index of b with respect to a ( water to air) is denoted by \[\dfrac{1}{\mu }\]
Therefore, the previous equation can also be written as:
\[\sin i = \dfrac{1}{\mu }\]
Drawing the triangle from the above equation:
\[\tan i = \dfrac{1}{{\sqrt {{\mu ^2} - 1} }}\]
Equating values of\[\tan i\] :
\[\dfrac{d}{{2h}} = \dfrac{1}{{\sqrt {{\mu ^2} - 1} }}\]
Solving the equation, we get:
\[d = \dfrac{{2h}}{{\sqrt {{\mu ^2} - 1} }}\]
This is the required value of diameter.
Note: Total internal reflection takes place when light ray travels from optically denser medium to the rarer medium. Here, (water-air surface). The rarer medium is the medium, in which the speed of light is more whereas the denser medium is the one where the speed of light is less.
Complete step by step answer:
Let us understand the concept of total internal Reflection from the following definitions:
The phenomenon of reflection of total light when the light travelling in a denser medium strikes the interface separating the denser and the rarer medium at an angle greater than the critical angle, this is referred to as total internal reflection.
Now, we come across a term, critical angle. This critical angle is the angle of incidence in the denser medium, for which the angle of refraction in the rarer medium becomes\[{90^o}\] .
Now coming to the question, it is given that:
Height of the jar=h
Refractive index of the transparent medium is =\[\mu \]
We need to find the diameter of the ring, which when placed symmetrically on the top surface, the dot O at the bottom surface becomes invisible.
In order to make the dot invisible, rays marked OA and OB must suffer total internal Reflection.
Let \[\angle AOC\] be the angle of incidence marked as I in the diagram.
In\[\Delta AOC\] :
\[\tan i = \dfrac{{AC}}{{OC}} = \dfrac{{d/2}}{h}\]
Now, we know, for total internal reflection to occur, \[\angle i \geqslant \angle c\]
So, \[\sin i = \sin c\]
Applying Snell’s law:
We know,
\[\dfrac{{\sin i}}{{\sin r}} = \mu \]
Where, r= angle of refraction, which is \[{90^o}\] .
We know, if refractive index of media a with respect to b (air to water) is denoted by\[\mu \], then refractive index of b with respect to a ( water to air) is denoted by \[\dfrac{1}{\mu }\]
Therefore, the previous equation can also be written as:
\[\sin i = \dfrac{1}{\mu }\]
Drawing the triangle from the above equation:
\[\tan i = \dfrac{1}{{\sqrt {{\mu ^2} - 1} }}\]
Equating values of\[\tan i\] :
\[\dfrac{d}{{2h}} = \dfrac{1}{{\sqrt {{\mu ^2} - 1} }}\]
Solving the equation, we get:
\[d = \dfrac{{2h}}{{\sqrt {{\mu ^2} - 1} }}\]
This is the required value of diameter.
Note: Total internal reflection takes place when light ray travels from optically denser medium to the rarer medium. Here, (water-air surface). The rarer medium is the medium, in which the speed of light is more whereas the denser medium is the one where the speed of light is less.
Recently Updated Pages
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
Other Pages
Calculate CFSE of the following complex FeCN64 A 04Delta class 11 chemistry JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
Formula for number of images formed by two plane mirrors class 12 physics JEE_Main
The focal length of a thin biconvex lens is 20cm When class 12 physics JEE_Main
If two bulbs of 25W and 100W rated at 200V are connected class 12 physics JEE_Main
A ball of mass 05 Kg moving with a velocity of 2ms class 11 physics JEE_Main