
A hollow cylinder of length $l$ and radii $a$ and $b$ is filled with a material of resistivity $\rho $ and is connected to a battery of emf $E$ through an ammeter. Find the current through the ammeter.
A) $\dfrac{{E\pi l\left( {{b^2} - {a^2}} \right)}}{{\rho \lambda }}$
B) $\dfrac{{E\pi l}}{{\left( {\rho {{\log }_e}\dfrac{b}{a}} \right)}}$
C) $\dfrac{{E2\pi l}}{{\left( {\rho {{\log }_e}\dfrac{b}{a}} \right)}}$
D) $\dfrac{{E2\pi l}}{{\left( {\rho {{\log }_e}\dfrac{a}{b}} \right)}}$
Answer
123.9k+ views
Hint: Here the resistance offered to the flow of current through the ammeter is the resistance of the entire cylinder. The current is obtained using Ohm’s law. The resistance of the entire cylinder can be obtained by integrating the resistance of a small element of the given cylinder between the radii of the hollow cylinder.
Formulas used:
i) Ohm’s law gives the current through a circuit as $I = \dfrac{V}{R}$ where $V$ is the potential difference across the circuit and $R$ is the resistance offered to the flow of current in the circuit.
ii) The resistance of a body is given by, $R = \dfrac{{\rho l}}{A}$ where $\rho $ is the resistivity of the material of the body, $l$ is the length of the body and $A$ is the area of the body.
Complete step by step answer:
Step 1: Sketch a figure describing the given circuit and obtain the resistance of an elemental area of the cylinder.

The above figure represents the circuit diagram of the problem at hand.
The length of the cylinder is given to be $l$ and $\rho $ is the resistivity of the material of the cylinder.
The radii of the cylinder are given to be $a$ and $b$.
The potential difference across the circuit is given to be $V = E$ .
Let $R$ be the resistance of the cylinder and $I$ be the current through the ammeter.
We now consider a small element of the cylinder of radius $r = x$ and length $l = dx$ as shown in the figure below. The area of the small element will be $A = 2\pi xl$.

Now the resistance of the small element can be expressed as $dR = \dfrac{{\rho dx}}{{2\pi xl}}$ ------ (1).
Step 2: Integrate equation (1) to obtain the resistance of the entire cylinder.
The resistance offered by the circuit to the flow of current is obtained by integrating equation (1) between the limits $a$ and $b$ .
i.e., $R = \int\limits_a^b {dR} $ -------- (2)
Substituting equation (1) in (2) we get, $R = \int\limits_a^b {\dfrac{{\rho dx}}{{2\pi xl}} = \dfrac{\rho }{{2\pi l}}\int\limits_a^b {\dfrac{{dx}}{x}} } $
On integrating and applying the limits we get, $R = \dfrac{\rho }{{2\pi l}}\left[ {{{\log }_e}b - {{\log }_e}a} \right]$ -------- (A)
$ \Rightarrow R = \dfrac{\rho }{{2\pi l}}{\log _e}\left( {\dfrac{b}{a}} \right)$
Thus the resistance of the entire cylinder is $R = \dfrac{\rho }{{2\pi l}}{\log _e}\left( {\dfrac{b}{a}} \right)$ .
Step 3: Using Ohm’s law obtain the current through the ammeter.
Ohm’s law gives the current through the ammeter as $I = \dfrac{E}{R}$ -------- (3)
Substituting for $R = \dfrac{\rho }{{2\pi l}}{\log _e}\left( {\dfrac{b}{a}} \right)$ in equation (3) we get, $I = \dfrac{E}{{\left( {\dfrac{\rho }{{2\pi l}}{{\log }_e}\left( {\dfrac{b}{a}} \right)} \right)}}$
$ \Rightarrow I = \dfrac{{E2\pi l}}{{\rho {{\log }_e}\left( {\dfrac{b}{a}} \right)}}$
Thus the current through the ammeter is $I = \dfrac{{E2\pi l}}{{\rho {{\log }_e}\left( {\dfrac{b}{a}} \right)}}$
So the correct option is C.
Note: The integral of $\dfrac{1}{x}$ is given by, $\int {\dfrac{{dx}}{x} = \ln x = {{\log }_e}x} $. This is obtained in equation (A). Also, we have ${\log _e}\dfrac{a}{b} = {\log _e}a - {\log _e}b$. This result is used to simplify the expression for the resistance of the entire cylinder. The integration of any function will always be easier if we take the constants involved in the function outside the integral.
Formulas used:
i) Ohm’s law gives the current through a circuit as $I = \dfrac{V}{R}$ where $V$ is the potential difference across the circuit and $R$ is the resistance offered to the flow of current in the circuit.
ii) The resistance of a body is given by, $R = \dfrac{{\rho l}}{A}$ where $\rho $ is the resistivity of the material of the body, $l$ is the length of the body and $A$ is the area of the body.
Complete step by step answer:
Step 1: Sketch a figure describing the given circuit and obtain the resistance of an elemental area of the cylinder.

The above figure represents the circuit diagram of the problem at hand.
The length of the cylinder is given to be $l$ and $\rho $ is the resistivity of the material of the cylinder.
The radii of the cylinder are given to be $a$ and $b$.
The potential difference across the circuit is given to be $V = E$ .
Let $R$ be the resistance of the cylinder and $I$ be the current through the ammeter.
We now consider a small element of the cylinder of radius $r = x$ and length $l = dx$ as shown in the figure below. The area of the small element will be $A = 2\pi xl$.

Now the resistance of the small element can be expressed as $dR = \dfrac{{\rho dx}}{{2\pi xl}}$ ------ (1).
Step 2: Integrate equation (1) to obtain the resistance of the entire cylinder.
The resistance offered by the circuit to the flow of current is obtained by integrating equation (1) between the limits $a$ and $b$ .
i.e., $R = \int\limits_a^b {dR} $ -------- (2)
Substituting equation (1) in (2) we get, $R = \int\limits_a^b {\dfrac{{\rho dx}}{{2\pi xl}} = \dfrac{\rho }{{2\pi l}}\int\limits_a^b {\dfrac{{dx}}{x}} } $
On integrating and applying the limits we get, $R = \dfrac{\rho }{{2\pi l}}\left[ {{{\log }_e}b - {{\log }_e}a} \right]$ -------- (A)
$ \Rightarrow R = \dfrac{\rho }{{2\pi l}}{\log _e}\left( {\dfrac{b}{a}} \right)$
Thus the resistance of the entire cylinder is $R = \dfrac{\rho }{{2\pi l}}{\log _e}\left( {\dfrac{b}{a}} \right)$ .
Step 3: Using Ohm’s law obtain the current through the ammeter.
Ohm’s law gives the current through the ammeter as $I = \dfrac{E}{R}$ -------- (3)
Substituting for $R = \dfrac{\rho }{{2\pi l}}{\log _e}\left( {\dfrac{b}{a}} \right)$ in equation (3) we get, $I = \dfrac{E}{{\left( {\dfrac{\rho }{{2\pi l}}{{\log }_e}\left( {\dfrac{b}{a}} \right)} \right)}}$
$ \Rightarrow I = \dfrac{{E2\pi l}}{{\rho {{\log }_e}\left( {\dfrac{b}{a}} \right)}}$
Thus the current through the ammeter is $I = \dfrac{{E2\pi l}}{{\rho {{\log }_e}\left( {\dfrac{b}{a}} \right)}}$
So the correct option is C.
Note: The integral of $\dfrac{1}{x}$ is given by, $\int {\dfrac{{dx}}{x} = \ln x = {{\log }_e}x} $. This is obtained in equation (A). Also, we have ${\log _e}\dfrac{a}{b} = {\log _e}a - {\log _e}b$. This result is used to simplify the expression for the resistance of the entire cylinder. The integration of any function will always be easier if we take the constants involved in the function outside the integral.
Recently Updated Pages
Young's Double Slit Experiment Step by Step Derivation

Difference Between Circuit Switching and Packet Switching

Difference Between Mass and Weight

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Sign up for JEE Main 2025 Live Classes - Vedantu

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Main Login 2045: Step-by-Step Instructions and Details

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Physics Average Value and RMS Value JEE Main 2025

JEE Mains 2025 Correction Window Date (Out) – Check Procedure and Fees Here!
