
A heavy truck and bike are moving with the same kinetic energy. If the mass of the truck is four times that of the bike, then calculate the ratio of their momenta.
Answer
138k+ views
Hint: Use the formula of kinetic energy ${\text{K}}{\text{.E}}{\text{. = }}\dfrac{{\text{1}}}{{\text{2}}}{\text{m}}{{\text{v}}^{\text{2}}}$and then using this formula derive the formula for momentum by multiplying and dividing by m. As momentum p = mv. From here, we can deduce the momentum of the truck. Then similarly deduce the momentum of the bike. Finally, evaluate the ratio of their momentum.
Complete step by step solution:
Given: Kinetic energy of the truck = Kinetic energy of the bike
Mathematically ${\text{K}}{\text{.E}}{\text{.(truck) = K}}{\text{.E}}{\text{.(bike)}}$
Kinetic energy of truck is $\dfrac{{\text{1}}}{{\text{2}}}{{\text{m}}_{\text{1}}}{{\text{v}}_{\text{1}}}^{\text{2}}$
Multiplying and dividing by m1, we get
$\dfrac{{\text{1}}}{{\text{2}}}\dfrac{{{{\text{m}}_{\text{1}}}^{\text{2}}{{\text{v}}_{\text{1}}}^{\text{2}}}}{{{{\text{m}}_{\text{1}}}}}{\text{ = }}\dfrac{{{{\text{p}}_1}^{\text{2}}}}{{{\text{2}}{{\text{m}}_{\text{1}}}}}$
Kinetic energy of bike is $\dfrac{{\text{1}}}{{\text{2}}}{{\text{m}}_2}{{\text{v}}_2}^{\text{2}}$
Multiplying and dividing by m2, we get
$\dfrac{{\text{1}}}{{\text{2}}}\dfrac{{{{\text{m}}_2}^{\text{2}}{{\text{v}}_2}^{\text{2}}}}{{{{\text{m}}_2}}}{\text{ = }}\dfrac{{{{\text{p}}_2}^{\text{2}}}}{{{\text{2}}{{\text{m}}_2}}}$
$\therefore {\text{ }}\dfrac{{{{\text{p}}_{\text{1}}}^{\text{2}}}}{{{\text{2}}{{\text{m}}_{\text{1}}}}}{\text{ = }}\dfrac{{{{\text{p}}_{\text{2}}}^{\text{2}}}}{{{\text{2}}{{\text{m}}_{\text{2}}}}}...{\text{(i)}}$
Where $m_1$ = Mass of the truck
$v_1$ = Velocity of the truck
$m_2$ = Mass of the bike
$v_2$ = Velocity of the bike
$p_1$ = momenta of truck
$p_2$ = momenta of bike
Mass of the truck is four times that of the bike i.e.,
${\text{4}}{{\text{m}}_{\text{1}}}{\text{ = }}{{\text{m}}_{\text{2}}}...{\text{(ii)}}$
On substituting the value of m1 from (ii) to (i), we get
\[
\dfrac{{{{\text{p}}_{\text{1}}}^{\text{2}}}}{{{\text{2}}{{\text{m}}_2}}}{\text{ = }}\dfrac{{{{\text{p}}_{\text{2}}}^{\text{2}}}}{{{\text{8}}{{\text{m}}_{\text{2}}}}} \\
\Rightarrow \dfrac{{{{\text{p}}_{\text{1}}}^{\text{2}}}}{1}{\text{ = }}\dfrac{{{{\text{p}}_{\text{2}}}^{\text{2}}}}{4} \\
\therefore \dfrac{{{{\text{p}}_{\text{1}}}}}{{{{\text{p}}_{\text{2}}}}}{\text{ = }}\dfrac{{\text{1}}}{{\text{2}}} \\
\]
Therefore, the ratio of momenta of truck and bike is 1:2.
Note: Kinetic energy is the energy possessed by the particle due to its motion. The formula of kinetic energy is ${\text{K}}{\text{.E}}{\text{. = }}\dfrac{{\text{1}}}{{\text{2}}}{\text{m}}{{\text{v}}^{\text{2}}}$ where m = mass of an object and v = velocity of an object. SI unit of the mass is $Kg$ and the SI unit of the velocity is $m/ s^2$. Thus, SI unit of kinetic energy is Joule and $1 Joule$ = $1 kg m/ s^2$. Momentum of an object is equal to the mass of the object times the velocity of the object. The formula for momentum is P = mv where m = mass of an object and v = velocity. SI unit of momentum is $kg m/s$.
Complete step by step solution:
Given: Kinetic energy of the truck = Kinetic energy of the bike
Mathematically ${\text{K}}{\text{.E}}{\text{.(truck) = K}}{\text{.E}}{\text{.(bike)}}$
Kinetic energy of truck is $\dfrac{{\text{1}}}{{\text{2}}}{{\text{m}}_{\text{1}}}{{\text{v}}_{\text{1}}}^{\text{2}}$
Multiplying and dividing by m1, we get
$\dfrac{{\text{1}}}{{\text{2}}}\dfrac{{{{\text{m}}_{\text{1}}}^{\text{2}}{{\text{v}}_{\text{1}}}^{\text{2}}}}{{{{\text{m}}_{\text{1}}}}}{\text{ = }}\dfrac{{{{\text{p}}_1}^{\text{2}}}}{{{\text{2}}{{\text{m}}_{\text{1}}}}}$
Kinetic energy of bike is $\dfrac{{\text{1}}}{{\text{2}}}{{\text{m}}_2}{{\text{v}}_2}^{\text{2}}$
Multiplying and dividing by m2, we get
$\dfrac{{\text{1}}}{{\text{2}}}\dfrac{{{{\text{m}}_2}^{\text{2}}{{\text{v}}_2}^{\text{2}}}}{{{{\text{m}}_2}}}{\text{ = }}\dfrac{{{{\text{p}}_2}^{\text{2}}}}{{{\text{2}}{{\text{m}}_2}}}$
$\therefore {\text{ }}\dfrac{{{{\text{p}}_{\text{1}}}^{\text{2}}}}{{{\text{2}}{{\text{m}}_{\text{1}}}}}{\text{ = }}\dfrac{{{{\text{p}}_{\text{2}}}^{\text{2}}}}{{{\text{2}}{{\text{m}}_{\text{2}}}}}...{\text{(i)}}$
Where $m_1$ = Mass of the truck
$v_1$ = Velocity of the truck
$m_2$ = Mass of the bike
$v_2$ = Velocity of the bike
$p_1$ = momenta of truck
$p_2$ = momenta of bike
Mass of the truck is four times that of the bike i.e.,
${\text{4}}{{\text{m}}_{\text{1}}}{\text{ = }}{{\text{m}}_{\text{2}}}...{\text{(ii)}}$
On substituting the value of m1 from (ii) to (i), we get
\[
\dfrac{{{{\text{p}}_{\text{1}}}^{\text{2}}}}{{{\text{2}}{{\text{m}}_2}}}{\text{ = }}\dfrac{{{{\text{p}}_{\text{2}}}^{\text{2}}}}{{{\text{8}}{{\text{m}}_{\text{2}}}}} \\
\Rightarrow \dfrac{{{{\text{p}}_{\text{1}}}^{\text{2}}}}{1}{\text{ = }}\dfrac{{{{\text{p}}_{\text{2}}}^{\text{2}}}}{4} \\
\therefore \dfrac{{{{\text{p}}_{\text{1}}}}}{{{{\text{p}}_{\text{2}}}}}{\text{ = }}\dfrac{{\text{1}}}{{\text{2}}} \\
\]
Therefore, the ratio of momenta of truck and bike is 1:2.
Note: Kinetic energy is the energy possessed by the particle due to its motion. The formula of kinetic energy is ${\text{K}}{\text{.E}}{\text{. = }}\dfrac{{\text{1}}}{{\text{2}}}{\text{m}}{{\text{v}}^{\text{2}}}$ where m = mass of an object and v = velocity of an object. SI unit of the mass is $Kg$ and the SI unit of the velocity is $m/ s^2$. Thus, SI unit of kinetic energy is Joule and $1 Joule$ = $1 kg m/ s^2$. Momentum of an object is equal to the mass of the object times the velocity of the object. The formula for momentum is P = mv where m = mass of an object and v = velocity. SI unit of momentum is $kg m/s$.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs

JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

How to find Oxidation Number - Important Concepts for JEE

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

A body crosses the topmost point of a vertical circle class 11 physics JEE_Main

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Degree of Dissociation and Its Formula With Solved Example for JEE

At which height is gravity zero class 11 physics JEE_Main

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
