
(A) Half-life of a first order reaction is independent of the initial concentration of the reactant (R) ${{t}_{{1}/{2}\;}}\left( first\text{ order} \right)=\dfrac{\tau }{1.44}$ , where $\tau $ is the average life.
[A] Both (R) and (A) are true and reason is the correct explanation of the assertion.
[B] Both (R) and (A) are true and reason is not the correct explanation of the assertion.
[C] Assertion (A) is true but reason (R) is false.
[D] Assertion (A) and reason (R) both are false.
[E] Assertion (A) is false but reason (R) is true.
Answer
154.2k+ views
Hint: Half-life of the element is the time required for the substance to reduce to its half. We can explain this on the basis of radioactive disintegration law. The average life period is the reciprocal of the decay constant.
Complete Step by Step Solution: We know that the spontaneous disintegration of certain nuclei to form new elements gives us an active radiation which affects photographic plates and affects electric and magnetic fields. This is known as radioactivity.
The half-life period of a radioactive element is the time required for the substance to reduce to half of its initial value.
The general equation that we can use here to find out the amount of substance left after 3000 years is-
\[{{N}_{\circ }}{{\left( \dfrac{1}{2} \right)}^{n}}=N\]
Where, \[{{N}_{\circ }}\] is the initial amount of the element and N is the amount of the element left after n half-life time. ‘n’ is the number of half-life.
According to the radioactive disintegration law, the rate of disintegration at any time is proportional to the number of atoms present at that time. This law gives us a relation of the number of atoms present at a particular time. The relation is-
\[n={{n}_{\circ }}{{e}^{-\lambda t}}\]
From here, we can find the half-life of an element which comes out to be-
\[{{t}_{{1}/{2}\;}}=\dfrac{0.693}{\lambda }\]
Where, lambda $\left( \lambda \right)$ is the decay constant. We can see from the above equation that there is no term of number of atoms present. It means that half-life of the element does not depend on the concentration of the reactant initially.
Now, let us discuss the average life period.
We define the average life period as the reciprocal of the decay constant of a radioactive element. We denote average life by the symbol, $\tau $, tau.
So, we can write that- $\tau =\dfrac{1}{\lambda }$
The half-life is related to the average life period as-
${{t}_{{1}/{2}\;}}=\dfrac{\tau }{1.44}$
We can understand from the above discussion that both the statements given to us are correct but the reason is not necessarily correct for the explanation of the assertion.
Therefore, the correct answer is option [B] Both (R) and (A) are true but the reason is not the correct explanation of the assertion.
Note: Higher the half-life of a radioactive element is, higher is its stability. However, chemical changes depend on factors like temperature, pressure, concentration and we can speed up or slow down the chemical changes by this factor but the half-life remains unchanged. The half-life of a radioactive element is independent of these factors.
Complete Step by Step Solution: We know that the spontaneous disintegration of certain nuclei to form new elements gives us an active radiation which affects photographic plates and affects electric and magnetic fields. This is known as radioactivity.
The half-life period of a radioactive element is the time required for the substance to reduce to half of its initial value.
The general equation that we can use here to find out the amount of substance left after 3000 years is-
\[{{N}_{\circ }}{{\left( \dfrac{1}{2} \right)}^{n}}=N\]
Where, \[{{N}_{\circ }}\] is the initial amount of the element and N is the amount of the element left after n half-life time. ‘n’ is the number of half-life.
According to the radioactive disintegration law, the rate of disintegration at any time is proportional to the number of atoms present at that time. This law gives us a relation of the number of atoms present at a particular time. The relation is-
\[n={{n}_{\circ }}{{e}^{-\lambda t}}\]
From here, we can find the half-life of an element which comes out to be-
\[{{t}_{{1}/{2}\;}}=\dfrac{0.693}{\lambda }\]
Where, lambda $\left( \lambda \right)$ is the decay constant. We can see from the above equation that there is no term of number of atoms present. It means that half-life of the element does not depend on the concentration of the reactant initially.
Now, let us discuss the average life period.
We define the average life period as the reciprocal of the decay constant of a radioactive element. We denote average life by the symbol, $\tau $, tau.
So, we can write that- $\tau =\dfrac{1}{\lambda }$
The half-life is related to the average life period as-
${{t}_{{1}/{2}\;}}=\dfrac{\tau }{1.44}$
We can understand from the above discussion that both the statements given to us are correct but the reason is not necessarily correct for the explanation of the assertion.
Therefore, the correct answer is option [B] Both (R) and (A) are true but the reason is not the correct explanation of the assertion.
Note: Higher the half-life of a radioactive element is, higher is its stability. However, chemical changes depend on factors like temperature, pressure, concentration and we can speed up or slow down the chemical changes by this factor but the half-life remains unchanged. The half-life of a radioactive element is independent of these factors.
Recently Updated Pages
JEE Main 2022 (June 29th Shift 2) Maths Question Paper with Answer Key

JEE Main 2023 (January 25th Shift 1) Maths Question Paper with Answer Key

JEE Main 2022 (July 29th Shift 1) Maths Question Paper with Answer Key

JEE Main 2022 (July 26th Shift 2) Chemistry Question Paper with Answer Key

JEE Main 2022 (June 26th Shift 2) Maths Question Paper with Answer Key

JEE Main 2022 (June 29th Shift 1) Physics Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Displacement-Time Graph and Velocity-Time Graph for JEE

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Other Pages
NCERT Solutions for Class 12 Chemistry Chapter 1 Solutions

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 12 Chemistry Chapter 2 Electrochemistry

NCERT Solutions for Class 12 Chemistry Chapter 6 Haloalkanes and Haloarenes

Solutions Class 12 Notes: CBSE Chemistry Chapter 1

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More
