Answer
Verified
88.2k+ views
Hint: Use the formula of the volume coefficient of expansion given below, and substitute the value of the temperature and the volume before expansion and after expansion in it. The simplification of the obtained equation provides the answer.
Formula used:
The formula of the volume coefficient of expansion is given by
$\alpha = \dfrac{{{V_2} - {V_1}}}{{{V_1}{t_2} - {V_2}{t_1}}}$
Where $\alpha $ is the volume coefficient of expansion, ${V_2}$ is the volume of the gas after expansion, ${V_1}$ is the volume of the gas before expansion, ${t_1}$ is the first temperature of the gas and ${t_2}$ is the second temperature of the gas.
Complete step by step solution
It is given that the
Initial volume of the gas, ${V_1} = 1000\,cc$
Final volume of the gas, ${V_2} = 1200\,cc$
Initial temperature of the gas, ${t_1} = {27^ \circ }\,C$
Final temperature of the gas, ${t_2} = {87^ \circ }\,C$
By using the formula of the volume coefficient of expansion,
$\alpha = \dfrac{{{V_2} - {V_1}}}{{{V_1}{t_2} - {V_2}{t_1}}}$
Substituting the values of the initial and the final temperature and also the initial and the final volume of the gas.
$\alpha = \dfrac{{1200 - 1000}}{{\left( {1000 \times 87} \right) - \left( {1200 \times 27} \right)}}$
By simplifying the above equation, we get
$\alpha = \dfrac{{200}}{{87000 - 32400}}$
By doing basic arithmetic operation, we get
$\alpha = \dfrac{{200}}{{54600}}$
By further simplification,
$\alpha = \dfrac{1}{{273}}{\,^0}\,{C^{ - 1}}$
Hence the value of the coefficient of expansion is obtained as $\dfrac{1}{{273}}{\,^0}\,{C^{ - 1}}$ .
Thus the option (A) is correct.
Note: The basic concept behind this question is the gas molecules occupy greater space on heating. Hence when the temperature increases, the volume occupied by the gas also increases. This is because heating causes the molecules in the gas to move further apart.
Formula used:
The formula of the volume coefficient of expansion is given by
$\alpha = \dfrac{{{V_2} - {V_1}}}{{{V_1}{t_2} - {V_2}{t_1}}}$
Where $\alpha $ is the volume coefficient of expansion, ${V_2}$ is the volume of the gas after expansion, ${V_1}$ is the volume of the gas before expansion, ${t_1}$ is the first temperature of the gas and ${t_2}$ is the second temperature of the gas.
Complete step by step solution
It is given that the
Initial volume of the gas, ${V_1} = 1000\,cc$
Final volume of the gas, ${V_2} = 1200\,cc$
Initial temperature of the gas, ${t_1} = {27^ \circ }\,C$
Final temperature of the gas, ${t_2} = {87^ \circ }\,C$
By using the formula of the volume coefficient of expansion,
$\alpha = \dfrac{{{V_2} - {V_1}}}{{{V_1}{t_2} - {V_2}{t_1}}}$
Substituting the values of the initial and the final temperature and also the initial and the final volume of the gas.
$\alpha = \dfrac{{1200 - 1000}}{{\left( {1000 \times 87} \right) - \left( {1200 \times 27} \right)}}$
By simplifying the above equation, we get
$\alpha = \dfrac{{200}}{{87000 - 32400}}$
By doing basic arithmetic operation, we get
$\alpha = \dfrac{{200}}{{54600}}$
By further simplification,
$\alpha = \dfrac{1}{{273}}{\,^0}\,{C^{ - 1}}$
Hence the value of the coefficient of expansion is obtained as $\dfrac{1}{{273}}{\,^0}\,{C^{ - 1}}$ .
Thus the option (A) is correct.
Note: The basic concept behind this question is the gas molecules occupy greater space on heating. Hence when the temperature increases, the volume occupied by the gas also increases. This is because heating causes the molecules in the gas to move further apart.
Recently Updated Pages
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main
A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main
Other Pages
Derive an expression for maximum speed of a car on class 11 physics JEE_Main
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
Velocity of car at t 0 is u moves with a constant acceleration class 11 physics JEE_Main