
A given amount of gas occupies 1000cc at ${27^ \circ }\,C$ and $1200\,cc$ and ${87^ \circ }\,C$ . What is its volume coefficient of expansion
(A) ${\dfrac{1}{{273}}^0}\,{C^{ - 1}}$
(B) ${\dfrac{1}{{173}}^0}\,{C^{ - 1}}$
(C) ${173^0}\,{C^{ - 1}}$
(D) ${273^0}\,{C^{ - 1}}$
Answer
232.8k+ views
Hint: Use the formula of the volume coefficient of expansion given below, and substitute the value of the temperature and the volume before expansion and after expansion in it. The simplification of the obtained equation provides the answer.
Formula used:
The formula of the volume coefficient of expansion is given by
$\alpha = \dfrac{{{V_2} - {V_1}}}{{{V_1}{t_2} - {V_2}{t_1}}}$
Where $\alpha $ is the volume coefficient of expansion, ${V_2}$ is the volume of the gas after expansion, ${V_1}$ is the volume of the gas before expansion, ${t_1}$ is the first temperature of the gas and ${t_2}$ is the second temperature of the gas.
Complete step by step solution
It is given that the
Initial volume of the gas, ${V_1} = 1000\,cc$
Final volume of the gas, ${V_2} = 1200\,cc$
Initial temperature of the gas, ${t_1} = {27^ \circ }\,C$
Final temperature of the gas, ${t_2} = {87^ \circ }\,C$
By using the formula of the volume coefficient of expansion,
$\alpha = \dfrac{{{V_2} - {V_1}}}{{{V_1}{t_2} - {V_2}{t_1}}}$
Substituting the values of the initial and the final temperature and also the initial and the final volume of the gas.
$\alpha = \dfrac{{1200 - 1000}}{{\left( {1000 \times 87} \right) - \left( {1200 \times 27} \right)}}$
By simplifying the above equation, we get
$\alpha = \dfrac{{200}}{{87000 - 32400}}$
By doing basic arithmetic operation, we get
$\alpha = \dfrac{{200}}{{54600}}$
By further simplification,
$\alpha = \dfrac{1}{{273}}{\,^0}\,{C^{ - 1}}$
Hence the value of the coefficient of expansion is obtained as $\dfrac{1}{{273}}{\,^0}\,{C^{ - 1}}$ .
Thus the option (A) is correct.
Note: The basic concept behind this question is the gas molecules occupy greater space on heating. Hence when the temperature increases, the volume occupied by the gas also increases. This is because heating causes the molecules in the gas to move further apart.
Formula used:
The formula of the volume coefficient of expansion is given by
$\alpha = \dfrac{{{V_2} - {V_1}}}{{{V_1}{t_2} - {V_2}{t_1}}}$
Where $\alpha $ is the volume coefficient of expansion, ${V_2}$ is the volume of the gas after expansion, ${V_1}$ is the volume of the gas before expansion, ${t_1}$ is the first temperature of the gas and ${t_2}$ is the second temperature of the gas.
Complete step by step solution
It is given that the
Initial volume of the gas, ${V_1} = 1000\,cc$
Final volume of the gas, ${V_2} = 1200\,cc$
Initial temperature of the gas, ${t_1} = {27^ \circ }\,C$
Final temperature of the gas, ${t_2} = {87^ \circ }\,C$
By using the formula of the volume coefficient of expansion,
$\alpha = \dfrac{{{V_2} - {V_1}}}{{{V_1}{t_2} - {V_2}{t_1}}}$
Substituting the values of the initial and the final temperature and also the initial and the final volume of the gas.
$\alpha = \dfrac{{1200 - 1000}}{{\left( {1000 \times 87} \right) - \left( {1200 \times 27} \right)}}$
By simplifying the above equation, we get
$\alpha = \dfrac{{200}}{{87000 - 32400}}$
By doing basic arithmetic operation, we get
$\alpha = \dfrac{{200}}{{54600}}$
By further simplification,
$\alpha = \dfrac{1}{{273}}{\,^0}\,{C^{ - 1}}$
Hence the value of the coefficient of expansion is obtained as $\dfrac{1}{{273}}{\,^0}\,{C^{ - 1}}$ .
Thus the option (A) is correct.
Note: The basic concept behind this question is the gas molecules occupy greater space on heating. Hence when the temperature increases, the volume occupied by the gas also increases. This is because heating causes the molecules in the gas to move further apart.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

