
A girl of height $1.8m$ is walking away from the base of a lamp post at a speed of $1.2m{s^{ - 1}}$. If the lamp is $4.5m$ above the ground, find the length of her shadow after $5$ seconds.
Answer
206.7k+ views
Hint: First we have to calculate the distance of the girl from the lamp post after $5$ seconds. Then express the given data in a figure. Then applying the properties of right-angled triangles and trigonometric equations, we get the desired result.
Useful formula:
If the speed of a body is $x$ metre per second, then the distance covered by the body in $t$ seconds is speed $ \times $ time $ = xt$.
In a right angled triangle $ABC$ with ${90^ \circ }$ at $A$ and one of the non-right angles, say $\angle B = \theta $ , then $\tan \theta = \dfrac{{AC}}{{AB}}(\dfrac{{{\text{Opposite}}}}{{adjacent}})$
Complete step by step solution:
Given, the height of the girl is $1.8m$.
The speed of the girl is $1.2m{s^{ - 1}}$.
Height of the lamp is $4.5m$.
We have to find the length of her shadow after $5$ seconds.
Consider the figure.

Let $PQ$ represent the lamp post, $PQ = 4.5m$.
$A$ represents the position of the girl after $5$ seconds.
$ \Rightarrow AB = 1.8m$
It is given that the girl travels at a speed of $1.2m{s^{ - 1}}$.
Distance covered by her is speed $ \times $ time.
Means she covers $1.2 \times 5 = 6m$ in $5$ seconds.
This gives $AP = 6m$.
Draw a line parallel to $AP$ passing through $B$.
Join $BQ$ and extend to meet the line $AP$ at $C$.
Then since $CP$ parallel to $BR$ and $CQ$ is a common line intersecting these lines we have,
$\angle C = \angle B = \theta $
Consider $\vartriangle BRQ$, $BR = AP = 6m$ ( since $AB = PR$)
$\therefore \tan \theta = \dfrac{{{\text{Opposite}}}}{{{\text{adjacent}}}} = \dfrac{{QR}}{{BR}} = \dfrac{{2.7}}{6} - - - (i)$
Now consider $\Delta CAB$, here $AB = 1.8m$
$\therefore \tan \theta = \dfrac{{{\text{Opposite}}}}{{{\text{adjacent}}}} = \dfrac{{AB}}{{AC}} = \dfrac{{1.8}}{{AC}} - - - (ii)$
According to the figure $AC$ is the shadow of the girl after $5$ seconds.
From $(i)$ and $(ii)$ we have, $\dfrac{{2.7}}{6} = \dfrac{{1.8}}{{AC}}$
$ \Rightarrow AC = \dfrac{{(1.8) \times 6}}{{2.7}} = \dfrac{{2 \times 6}}{3} = 4$.
Therefore, the length of the shadow of the girl after $5$ seconds is $4m$.
Additional information:
In a right-angled triangle with one of the non-right angles $\theta $, then,
$\sin \theta = \dfrac{{{\text{Opposite}}}}{{{\text{Hypotenuse}}}}$
$\cos \theta = \dfrac{{{\text{Adjacent}}}}{{{\text{Hypotenuse}}}}$
$\tan \theta = \dfrac{{{\text{Opposite}}}}{{{\text{adjacent}}}}$
Note: While solving these kinds of problems one should be careful about the units of the measurements. The speed might be given in kilometres per hour instead of metres per second. In those cases, appropriate conversion must be done before solving.
Useful formula:
If the speed of a body is $x$ metre per second, then the distance covered by the body in $t$ seconds is speed $ \times $ time $ = xt$.
In a right angled triangle $ABC$ with ${90^ \circ }$ at $A$ and one of the non-right angles, say $\angle B = \theta $ , then $\tan \theta = \dfrac{{AC}}{{AB}}(\dfrac{{{\text{Opposite}}}}{{adjacent}})$
Complete step by step solution:
Given, the height of the girl is $1.8m$.
The speed of the girl is $1.2m{s^{ - 1}}$.
Height of the lamp is $4.5m$.
We have to find the length of her shadow after $5$ seconds.
Consider the figure.

Let $PQ$ represent the lamp post, $PQ = 4.5m$.
$A$ represents the position of the girl after $5$ seconds.
$ \Rightarrow AB = 1.8m$
It is given that the girl travels at a speed of $1.2m{s^{ - 1}}$.
Distance covered by her is speed $ \times $ time.
Means she covers $1.2 \times 5 = 6m$ in $5$ seconds.
This gives $AP = 6m$.
Draw a line parallel to $AP$ passing through $B$.
Join $BQ$ and extend to meet the line $AP$ at $C$.
Then since $CP$ parallel to $BR$ and $CQ$ is a common line intersecting these lines we have,
$\angle C = \angle B = \theta $
Consider $\vartriangle BRQ$, $BR = AP = 6m$ ( since $AB = PR$)
$\therefore \tan \theta = \dfrac{{{\text{Opposite}}}}{{{\text{adjacent}}}} = \dfrac{{QR}}{{BR}} = \dfrac{{2.7}}{6} - - - (i)$
Now consider $\Delta CAB$, here $AB = 1.8m$
$\therefore \tan \theta = \dfrac{{{\text{Opposite}}}}{{{\text{adjacent}}}} = \dfrac{{AB}}{{AC}} = \dfrac{{1.8}}{{AC}} - - - (ii)$
According to the figure $AC$ is the shadow of the girl after $5$ seconds.
From $(i)$ and $(ii)$ we have, $\dfrac{{2.7}}{6} = \dfrac{{1.8}}{{AC}}$
$ \Rightarrow AC = \dfrac{{(1.8) \times 6}}{{2.7}} = \dfrac{{2 \times 6}}{3} = 4$.
Therefore, the length of the shadow of the girl after $5$ seconds is $4m$.
Additional information:
In a right-angled triangle with one of the non-right angles $\theta $, then,
$\sin \theta = \dfrac{{{\text{Opposite}}}}{{{\text{Hypotenuse}}}}$
$\cos \theta = \dfrac{{{\text{Adjacent}}}}{{{\text{Hypotenuse}}}}$
$\tan \theta = \dfrac{{{\text{Opposite}}}}{{{\text{adjacent}}}}$
Note: While solving these kinds of problems one should be careful about the units of the measurements. The speed might be given in kilometres per hour instead of metres per second. In those cases, appropriate conversion must be done before solving.
Recently Updated Pages
Chemical Equation - Important Concepts and Tips for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

Conduction, Transfer of Energy Important Concepts and Tips for JEE

JEE Analytical Method of Vector Addition Important Concepts and Tips

Atomic Size - Important Concepts and Tips for JEE

JEE Main 2022 (June 29th Shift 1) Maths Question Paper with Answer Key

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026- Edit Form Details, Dates and Link

Atomic Structure: Definition, Models, and Examples

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Angle of Deviation in a Prism – Formula, Diagram & Applications

Hybridisation in Chemistry – Concept, Types & Applications

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

Collision: Meaning, Types & Examples in Physics

