
A gas is heated at a constant pressure. The fraction of heat supplied used for external work is:
(A) \[\dfrac{1}{\gamma }\]
(B) \[1 - \dfrac{1}{\gamma }\]
(C) \[\gamma - 1\]
(D) \[1 - \dfrac{1}{{{\gamma ^2}}}\]
Answer
205.5k+ views
Hint: Such a system must obey the first law of thermodynamics. Use the equation of the first law of thermodynamics to find the work done by the system.
Formula used: In this solution we will be using the following formulae;
\[\Delta U = \Delta Q - W\] where \[\Delta U\] is the change in internal energy of the system, \[\Delta Q\] is the change in thermal energy of (or the heat absorbed by) the system, and \[W\] is the work done by the system.
\[\Delta Q = m{c_p}\Delta T\] where \[m\]is the mass of the gas, \[{c_p}\]is the specific heat at constant pressure, and \[\Delta T\] is the change in temperature of the system.
\[\Delta U = m{c_v}\Delta T\] where \[{c_v}\] is the specific capacity at constant volume.
Complete Step-by-Step Solution:
When the gas is heated, the change in thermal energy would be given by
\[\Delta Q = m{c_p}\Delta T\]where \[m\] is the mass of the gas, \[{c_p}\] is the specific heat at constant pressure, and \[\Delta T\] is the change in temperature of the system.
At the same time, the change in internal energy is given by
\[\Delta U = m{c_v}\Delta T\] where \[{c_v}\] is the specific capacity at constant volume.
Now, from the first law of thermodynamics given as
\[\Delta U = \Delta Q - W\] where \[W\] is the work done by the system, we can find the work done as
\[W = \Delta Q - \Delta U\]
\[\dfrac{W}{{\Delta Q}} = \dfrac{{\Delta Q - \Delta U}}{{\Delta Q}} = 1 - \dfrac{{\Delta U}}{{\Delta Q}}\]
Replacing the known expressions into above equation, we have
\[\dfrac{W}{{\Delta Q}} = 1 - \dfrac{{m{c_v}\Delta T}}{{m{c_p}\Delta T}} = 1 - \dfrac{{{c_v}}}{{{c_p}}}\]
The ratio \[\dfrac{{{c_p}}}{{{c_v}}}\] is usually given the constant \[\gamma \]
Hence,
\[\dfrac{W}{{\Delta Q}} = 1 - \dfrac{1}{\gamma }\]
Thus, the correct option is B
Note: To avoid confusions, the thermodynamic equation can be written as
\[\Delta U = \Delta Q + W\]
However, in this format, the definition of \[W\] is the work done on (not by) the system. Hence, it is negative in value when work is done by the system
Formula used: In this solution we will be using the following formulae;
\[\Delta U = \Delta Q - W\] where \[\Delta U\] is the change in internal energy of the system, \[\Delta Q\] is the change in thermal energy of (or the heat absorbed by) the system, and \[W\] is the work done by the system.
\[\Delta Q = m{c_p}\Delta T\] where \[m\]is the mass of the gas, \[{c_p}\]is the specific heat at constant pressure, and \[\Delta T\] is the change in temperature of the system.
\[\Delta U = m{c_v}\Delta T\] where \[{c_v}\] is the specific capacity at constant volume.
Complete Step-by-Step Solution:
When the gas is heated, the change in thermal energy would be given by
\[\Delta Q = m{c_p}\Delta T\]where \[m\] is the mass of the gas, \[{c_p}\] is the specific heat at constant pressure, and \[\Delta T\] is the change in temperature of the system.
At the same time, the change in internal energy is given by
\[\Delta U = m{c_v}\Delta T\] where \[{c_v}\] is the specific capacity at constant volume.
Now, from the first law of thermodynamics given as
\[\Delta U = \Delta Q - W\] where \[W\] is the work done by the system, we can find the work done as
\[W = \Delta Q - \Delta U\]
\[\dfrac{W}{{\Delta Q}} = \dfrac{{\Delta Q - \Delta U}}{{\Delta Q}} = 1 - \dfrac{{\Delta U}}{{\Delta Q}}\]
Replacing the known expressions into above equation, we have
\[\dfrac{W}{{\Delta Q}} = 1 - \dfrac{{m{c_v}\Delta T}}{{m{c_p}\Delta T}} = 1 - \dfrac{{{c_v}}}{{{c_p}}}\]
The ratio \[\dfrac{{{c_p}}}{{{c_v}}}\] is usually given the constant \[\gamma \]
Hence,
\[\dfrac{W}{{\Delta Q}} = 1 - \dfrac{1}{\gamma }\]
Thus, the correct option is B
Note: To avoid confusions, the thermodynamic equation can be written as
\[\Delta U = \Delta Q + W\]
However, in this format, the definition of \[W\] is the work done on (not by) the system. Hence, it is negative in value when work is done by the system
Recently Updated Pages
Chemical Equation - Important Concepts and Tips for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

Conduction, Transfer of Energy Important Concepts and Tips for JEE

JEE Analytical Method of Vector Addition Important Concepts and Tips

Atomic Size - Important Concepts and Tips for JEE

JEE Main 2022 (June 29th Shift 1) Maths Question Paper with Answer Key

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Atomic Structure: Definition, Models, and Examples

JEE Main 2026 Session 1 Form Correction – Procedure, Fees & Editing Guidelines

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

Angle of Deviation in a Prism – Formula, Diagram & Applications

Hybridisation in Chemistry – Concept, Types & Applications

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

