
A galvanometer having a coil resistance of $100 \Omega$ gives a full scale deflection when a current of $1mA$ is passed through it. What is the value of the resistance, which can convert the galvanometer into an ammeter giving a full scale deflection for a current of $10A$?
$\left( A \right)$ $0.01\Omega $
$\left( B \right)$ $2\Omega $
$\left( C \right)$ $0.1\Omega $
$\left( D \right)$ $3\Omega $
Answer
219.9k+ views
Hint: Here we are given the resistance and the number of current passes through it.
We can find the value resistance by calculating the maximum voltage and the shunt resistance across the coil, since a galvanometer cannot measure heavy current, a very low shunt resistance is connected parallel to it.
Complete step by step answer:
Here, the value of the shunt resistance is so adjusted that most of the current pass through the shunt.
If the resistance of the galvanometer is $R_g$ it gives full-scale deflection when the current $I_g$ is passed through it then,
$\Rightarrow V = I_g R_g$
$\Rightarrow V = 1mA \times 100\Omega $
Let a shunt of resistance ( $R_s$) be connected in parallel to a galvanometer.
If the total current through the circuit is $I,$ then the value of $I$ is calculated by adding the current in the shunt resistance and the galvanometer.
By using the formula for the voltage we can calculate the value of shunt resistance.
\[\Rightarrow I = 10A = I_s + I_g\]
\[\Rightarrow V = I_s R_s = (I - I_g)R_s\]
$\Rightarrow (I - I_g)R_s = I_g R_g$
\[\Rightarrow (10 - {10^{ - 3}})R_s = 100 \times {10^{ - 3}}\] $(1m = {10^{ - 3}}).$
Thus the approximate value of shunt resistance will be,
$R_s \approx 0.01\Omega $
Hence the correct option is $\left( A \right)$, thus nullifying other options.
Note: A Galvanometer is a device used to detect feeble electric currents in the circuit.
A coil has been pivoted between the concave pole faces of a strong laminated horseshoe magnet.
When an electric current is passed through the coil, it deflects.
Thus only a small amount of current can be measured by the galvanometer. In order to measure the large current, it has to be converted into an ammeter.
A low resistance called Shunt resistance can be connected in parallel to the galvanometer to convert it into an ammeter.
We can find the value resistance by calculating the maximum voltage and the shunt resistance across the coil, since a galvanometer cannot measure heavy current, a very low shunt resistance is connected parallel to it.
Complete step by step answer:
Here, the value of the shunt resistance is so adjusted that most of the current pass through the shunt.
If the resistance of the galvanometer is $R_g$ it gives full-scale deflection when the current $I_g$ is passed through it then,
$\Rightarrow V = I_g R_g$
$\Rightarrow V = 1mA \times 100\Omega $
Let a shunt of resistance ( $R_s$) be connected in parallel to a galvanometer.
If the total current through the circuit is $I,$ then the value of $I$ is calculated by adding the current in the shunt resistance and the galvanometer.
By using the formula for the voltage we can calculate the value of shunt resistance.
\[\Rightarrow I = 10A = I_s + I_g\]
\[\Rightarrow V = I_s R_s = (I - I_g)R_s\]
$\Rightarrow (I - I_g)R_s = I_g R_g$
\[\Rightarrow (10 - {10^{ - 3}})R_s = 100 \times {10^{ - 3}}\] $(1m = {10^{ - 3}}).$
Thus the approximate value of shunt resistance will be,
$R_s \approx 0.01\Omega $
Hence the correct option is $\left( A \right)$, thus nullifying other options.
Note: A Galvanometer is a device used to detect feeble electric currents in the circuit.
A coil has been pivoted between the concave pole faces of a strong laminated horseshoe magnet.
When an electric current is passed through the coil, it deflects.
Thus only a small amount of current can be measured by the galvanometer. In order to measure the large current, it has to be converted into an ammeter.
A low resistance called Shunt resistance can be connected in parallel to the galvanometer to convert it into an ammeter.
Recently Updated Pages
Electricity and Magnetism Explained: Key Concepts & Applications

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

States of Matter Chapter For JEE Main Chemistry

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Understanding Uniform Acceleration in Physics

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Centrifugal Force in Physics

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Degree of Dissociation: Meaning, Formula, Calculation & Uses

