
A freshly prepared radioactive source of half-life $2h$ emits radiation of intensity which is $64$ times the permissible safe level. Calculate, the minimum time after which it would be possible to work safely with this source.
(A) $12h$
(B) $24h$
(C) $6h$
(D) $130h$
Answer
164.4k+ views
Hint: The phenomenon of the spontaneous disintegration of the atomic nucleus by emitting highly penetrating radiations as well as many other particles is natural radioactivity. We know that radioactive emissions are harmful to living beings. Here it is given that the intensity is $64$ times harmful than the permissible level. So we have to find an intensity that is $64$ times lesser than the given intensity.
Formula used
$N = {N_0}{e^{ - \lambda t}}$(Where $N$stands for the number of atoms at a given instant, ${N_0}$stands for the initial number of atoms. $\lambda $ is a constant called the disintegration constant or the decay constant, $t$stands for the time)
${T_{\dfrac{1}{2}}} = \dfrac{{\ln 2}}{\lambda }$ (Where ${T_{\dfrac{1}{2}}}$stands for the half-life period of the radioactive substance, $\lambda $is a constant called the disintegration constant or the decay constant)
Complete step by step solution:
According to the law of radioactive decay, the rate of disintegration of a radioactive substance at any instant is directly proportional to the number of atoms present in that substance at that instant.
So we know that the intensity is proportional to the number of atoms present in the sample at that instant.
We know that the number of atoms at any instant can be obtained by using the formula
$N = {N_0}{e^{ - \lambda t}}$
The half-life period of the source is given by ${T_{\dfrac{1}{2}}} = 2h$
The half-life period of any element can be obtained by using the formula, ${T_{\dfrac{1}{2}}} = \dfrac{{\ln 2}}{\lambda }$
Equating both we get
$2h = \dfrac{{\ln 2}}{\lambda }$
From this we get the disintegration constant as,
$\lambda = \dfrac{{\ln 2}}{2}$
It is given that the source is $64$times intense than the permissible safe level.
Therefore, we can say that the number of atoms in the permissible safe level will be, $\dfrac{{{N_0}}}{{64}}$
Now, we can rewrite the radioactive disintegration equation as,
$\dfrac{{{N_0}}}{{64}} = {N_0}{e^{ - \dfrac{{\ln 2}}{2}t}}$
From this we can find the time for the disintegration as follows,
$\dfrac{1}{{64}} = {e^{\dfrac{{ - \ln 2}}{2}t}}$
Taking the inverse, we get
$64 = {e^{\dfrac{{\ln 2}}{2}t}}$
Taking $\ln $on both sides, we get
$\ln ({2^6}) = \dfrac{{\ln 2}}{2}t$ ($64 = {2^6}$)
This can be written as,
$6\ln 2 = \dfrac{{\ln 2}}{2}t$
From this the time can be obtained as,
$t = 2 \times \dfrac{{6\ln 2}}{{\ln 2}}$
$\Rightarrow t = 2 \times 6 = 12$
The answer is: Option (A): $12h$
Note:
Alternate method:
Let us consider ${N_0}$to be the number of atoms at permissible safe level.
It is given that the intensity of the source is $64$times the permissible safe level, so we can write the number of atoms in the source as, $64{N_0}$
It will be safer to work with the given radio-active substance when $64{N_0}$becomes ${N_0}$.
The half-life of the given source is given as,
${T_{\dfrac{1}{2}}} = 2hr$
By definition, the half-life period of any radioactive substance is defined as the time taken by the reaction to disintegrate half the number of radioactive nuclei in a given sample.
This means that after $2hrs$,$64{N_0}$will become $32{N_0}$
In this manner, we have to check how many half-life periods are required for $64{N_0}$to become ${N_0}$
$64{N_0}\mathop \to \limits^{{T_{\dfrac{1}{2}}}} 32{N_0}$
$32{N_0}\mathop \to \limits^{{T_{\dfrac{1}{2}}}} 16{N_0}$
$16{N_0}\mathop \to \limits^{{T_{\dfrac{1}{2}}}} 8{N_0}$
$8{N_0}\mathop \to \limits^{{T_{\dfrac{1}{2}}}} 4{N_0}$
$4{N_0}\mathop \to \limits^{{T_{\dfrac{1}{2}}}} 2{N_0}$
$2{N_0}\mathop \to \limits^{{T_{\dfrac{1}{2}}}} {N_0}$
From this, we get that the number of atoms will become ${N_0}$after $6$half-life periods i.e.$6{T_{\dfrac{1}{2}}}$
$ \Rightarrow 6 \times 2 = 12hrs$
Formula used
$N = {N_0}{e^{ - \lambda t}}$(Where $N$stands for the number of atoms at a given instant, ${N_0}$stands for the initial number of atoms. $\lambda $ is a constant called the disintegration constant or the decay constant, $t$stands for the time)
${T_{\dfrac{1}{2}}} = \dfrac{{\ln 2}}{\lambda }$ (Where ${T_{\dfrac{1}{2}}}$stands for the half-life period of the radioactive substance, $\lambda $is a constant called the disintegration constant or the decay constant)
Complete step by step solution:
According to the law of radioactive decay, the rate of disintegration of a radioactive substance at any instant is directly proportional to the number of atoms present in that substance at that instant.
So we know that the intensity is proportional to the number of atoms present in the sample at that instant.
We know that the number of atoms at any instant can be obtained by using the formula
$N = {N_0}{e^{ - \lambda t}}$
The half-life period of the source is given by ${T_{\dfrac{1}{2}}} = 2h$
The half-life period of any element can be obtained by using the formula, ${T_{\dfrac{1}{2}}} = \dfrac{{\ln 2}}{\lambda }$
Equating both we get
$2h = \dfrac{{\ln 2}}{\lambda }$
From this we get the disintegration constant as,
$\lambda = \dfrac{{\ln 2}}{2}$
It is given that the source is $64$times intense than the permissible safe level.
Therefore, we can say that the number of atoms in the permissible safe level will be, $\dfrac{{{N_0}}}{{64}}$
Now, we can rewrite the radioactive disintegration equation as,
$\dfrac{{{N_0}}}{{64}} = {N_0}{e^{ - \dfrac{{\ln 2}}{2}t}}$
From this we can find the time for the disintegration as follows,
$\dfrac{1}{{64}} = {e^{\dfrac{{ - \ln 2}}{2}t}}$
Taking the inverse, we get
$64 = {e^{\dfrac{{\ln 2}}{2}t}}$
Taking $\ln $on both sides, we get
$\ln ({2^6}) = \dfrac{{\ln 2}}{2}t$ ($64 = {2^6}$)
This can be written as,
$6\ln 2 = \dfrac{{\ln 2}}{2}t$
From this the time can be obtained as,
$t = 2 \times \dfrac{{6\ln 2}}{{\ln 2}}$
$\Rightarrow t = 2 \times 6 = 12$
The answer is: Option (A): $12h$
Note:
Alternate method:
Let us consider ${N_0}$to be the number of atoms at permissible safe level.
It is given that the intensity of the source is $64$times the permissible safe level, so we can write the number of atoms in the source as, $64{N_0}$
It will be safer to work with the given radio-active substance when $64{N_0}$becomes ${N_0}$.
The half-life of the given source is given as,
${T_{\dfrac{1}{2}}} = 2hr$
By definition, the half-life period of any radioactive substance is defined as the time taken by the reaction to disintegrate half the number of radioactive nuclei in a given sample.
This means that after $2hrs$,$64{N_0}$will become $32{N_0}$
In this manner, we have to check how many half-life periods are required for $64{N_0}$to become ${N_0}$
$64{N_0}\mathop \to \limits^{{T_{\dfrac{1}{2}}}} 32{N_0}$
$32{N_0}\mathop \to \limits^{{T_{\dfrac{1}{2}}}} 16{N_0}$
$16{N_0}\mathop \to \limits^{{T_{\dfrac{1}{2}}}} 8{N_0}$
$8{N_0}\mathop \to \limits^{{T_{\dfrac{1}{2}}}} 4{N_0}$
$4{N_0}\mathop \to \limits^{{T_{\dfrac{1}{2}}}} 2{N_0}$
$2{N_0}\mathop \to \limits^{{T_{\dfrac{1}{2}}}} {N_0}$
From this, we get that the number of atoms will become ${N_0}$after $6$half-life periods i.e.$6{T_{\dfrac{1}{2}}}$
$ \Rightarrow 6 \times 2 = 12hrs$
Recently Updated Pages
Transistor as Amplifier: Working, Diagram, Uses & Questions

Moving Charges and Magnetism: Laws, Formulas & Applications

Environmental Chemistry Chapter for JEE Main Chemistry

Uniform Acceleration - Definition, Equation, Examples, and FAQs

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Wheatstone Bridge for JEE Main Physics 2025

Instantaneous Velocity - Formula based Examples for JEE
