Answer

Verified

69.9k+ views

**Hint:**The work done by the object is the product of the force applied to the body and the distance it covers. In our case since the force applied to the body depends on the displacement of the object itself, we will have to integrate the formula of work done from the initial to the final position.

Formula used: In this solution, we will use the following formula:

$W = \int\limits_a^b {Fdx} $ where $W$ is the work done in moving an object from position “a” to “b” under a force $F$.

**Complete step by step answer:**

We’ve been given that a force of $(4{x^2} + 3x)\,{\text{N}}$ acts on a particle which displaces it from $x = 2\,m$ to $x = 3\,m$. To calculate the work done, we can use the formula for work done as

$W = \int\limits_{x = 2}^{x = 3} {(4{x^2} + 3x)dx} $

On integrating the right side using the identity of integration $\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}} $, we get

$W = \left. {\left( {\dfrac{{4{x^3}}}{3} + \dfrac{{3{x^2}}}{2}} \right)} \right|_{x = 2}^{x = 3}$

On substituting the limits, the right-hand side simplifies as

\[W = \dfrac{{4{{(3)}^3}}}{3} + \dfrac{{3{{(3)}^2}}}{2} - \dfrac{{4{{(2)}^3}}}{3} - \dfrac{{3{{(2)}^2}}}{2}\]

\[ \Rightarrow W = 32.8\,J\]

**Hence the work done in moving an object from $x = 2\,m$ to $x = 3\,m$ under a force of $(4{x^2} + 3x)\,{\text{N}}$ is $32.8\,J$ which corresponds to option (A).**

**Note:**Here we must not directly substitute the values of $x$ in the equation as the force changes with the position of the particle and hence we must integrate the product of force and distance. The work is done only depending on the initial and the final position of the object which is reflected when we integrate the equation from the initial to the final position. This implies that irrespective of the path we take to reach the final point, the work done by the object will be the same.

Recently Updated Pages

Write an article on the need and importance of sports class 10 english JEE_Main

Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main

Choose the one which best expresses the meaning of class 9 english JEE_Main

What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main

A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main

A man stands at a distance of 250m from a wall He shoots class 9 physics JEE_Main