
A force of $(4{x^2} + 3x)\,{\text{N}}$ acts on a particle which displaces it from $x = 2\,m$ to $x = 3\,m$. The word done by the force is:
A)$32.8\,J$
B) $3.28\,J$
C) $0.328\,J$
D) Zero
Answer
163.2k+ views
Hint: The work done by the object is the product of the force applied to the body and the distance it covers. In our case since the force applied to the body depends on the displacement of the object itself, we will have to integrate the formula of work done from the initial to the final position.
Formula used: In this solution, we will use the following formula:
$W = \int\limits_a^b {Fdx} $ where $W$ is the work done in moving an object from position “a” to “b” under a force $F$.
Complete step by step answer:
We’ve been given that a force of $(4{x^2} + 3x)\,{\text{N}}$ acts on a particle which displaces it from $x = 2\,m$ to $x = 3\,m$. To calculate the work done, we can use the formula for work done as
$W = \int\limits_{x = 2}^{x = 3} {(4{x^2} + 3x)dx} $
On integrating the right side using the identity of integration $\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}} $, we get
$W = \left. {\left( {\dfrac{{4{x^3}}}{3} + \dfrac{{3{x^2}}}{2}} \right)} \right|_{x = 2}^{x = 3}$
On substituting the limits, the right-hand side simplifies as
\[W = \dfrac{{4{{(3)}^3}}}{3} + \dfrac{{3{{(3)}^2}}}{2} - \dfrac{{4{{(2)}^3}}}{3} - \dfrac{{3{{(2)}^2}}}{2}\]
\[ \Rightarrow W = 32.8\,J\]
Hence the work done in moving an object from $x = 2\,m$ to $x = 3\,m$ under a force of $(4{x^2} + 3x)\,{\text{N}}$ is $32.8\,J$ which corresponds to option (A).
Note: Here we must not directly substitute the values of $x$ in the equation as the force changes with the position of the particle and hence we must integrate the product of force and distance. The work is done only depending on the initial and the final position of the object which is reflected when we integrate the equation from the initial to the final position. This implies that irrespective of the path we take to reach the final point, the work done by the object will be the same.
Formula used: In this solution, we will use the following formula:
$W = \int\limits_a^b {Fdx} $ where $W$ is the work done in moving an object from position “a” to “b” under a force $F$.
Complete step by step answer:
We’ve been given that a force of $(4{x^2} + 3x)\,{\text{N}}$ acts on a particle which displaces it from $x = 2\,m$ to $x = 3\,m$. To calculate the work done, we can use the formula for work done as
$W = \int\limits_{x = 2}^{x = 3} {(4{x^2} + 3x)dx} $
On integrating the right side using the identity of integration $\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}} $, we get
$W = \left. {\left( {\dfrac{{4{x^3}}}{3} + \dfrac{{3{x^2}}}{2}} \right)} \right|_{x = 2}^{x = 3}$
On substituting the limits, the right-hand side simplifies as
\[W = \dfrac{{4{{(3)}^3}}}{3} + \dfrac{{3{{(3)}^2}}}{2} - \dfrac{{4{{(2)}^3}}}{3} - \dfrac{{3{{(2)}^2}}}{2}\]
\[ \Rightarrow W = 32.8\,J\]
Hence the work done in moving an object from $x = 2\,m$ to $x = 3\,m$ under a force of $(4{x^2} + 3x)\,{\text{N}}$ is $32.8\,J$ which corresponds to option (A).
Note: Here we must not directly substitute the values of $x$ in the equation as the force changes with the position of the particle and hence we must integrate the product of force and distance. The work is done only depending on the initial and the final position of the object which is reflected when we integrate the equation from the initial to the final position. This implies that irrespective of the path we take to reach the final point, the work done by the object will be the same.
Recently Updated Pages
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Charging and Discharging of Capacitor

Instantaneous Velocity - Formula based Examples for JEE

JEE Main Chemistry Question Paper with Answer Keys and Solutions

JEE Main Reservation Criteria 2025: SC, ST, EWS, and PwD Candidates

What is Normality in Chemistry?

Other Pages
Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks

NEET Marks vs Rank 2024|How to Calculate?

NEET 2025: All Major Changes in Application Process, Pattern and More
