
A force F acting on an object varies with distance x as shown in figure. The force is in N and x in m. The work done by the force in moving the object from $x = 0{\text{ to }}x = 6m$is:

(A) $13.5{\text{ J}}$
(B) $10{\text{ J}}$
(C) $15{\text{ J}}$
(D) $20{\text{ J}}$
Answer
232.8k+ views
Hint: Work is said to be done when a force produces motion in an object. The work done can be defined as the product of the force F and the displacement produced in the object, x. In a graphical form, F and x can be multiplied, and the area gives us the total value of the work done.
Complete step by step answer:
In a graphical representation of F vs x, we can integrate the curve and/or find the area enclosed between the two quantities.
This is the equivalent of multiplying in both quantities.
So, In the given graph we can divide the complex shape formed, into 2 simple shapes namely: A rectangle and a triangle.
Finding out areas of both these figures and adding them gives the value of total work done.
Area of triangle, ${A_1} = \dfrac{1}{2}bh$
From the graph, $b = 6 - 3 = 3$
$h = 3$
$\therefore {A_1} = \dfrac{1}{2} \times 3 \times 3$
${A_1} = 4.5Nm$
Now, Area of rectangle (square here)
${A_2} = {a^2}$
Where the side length, $a = 3$
${A_2} = {3^2}$
${A_2} = 9Nm$
The total work done, W is defined as:
$W = {A_1} + {A_2}$
$W = 4.5 + 9$
$W = 13.5Nm{\text{ or }}13.5J$
The correct option is (A).
Additional Information
Work done is highly dependent on the displacement of the body, no matter how much force is applied, if displacement or deformation of the body is zero, work done remains zero. It is a scalar quantity, but it is also a dot product of two vector quantities.
Note: If the shapes are given in forms of functions, then the work done can be calculated by integrating the function and applying limits, and adding up all the integrals. Even this question can be solved as an integral, but applying the formula for area simple shapes makes it easier to solve.
Complete step by step answer:
In a graphical representation of F vs x, we can integrate the curve and/or find the area enclosed between the two quantities.
This is the equivalent of multiplying in both quantities.
So, In the given graph we can divide the complex shape formed, into 2 simple shapes namely: A rectangle and a triangle.
Finding out areas of both these figures and adding them gives the value of total work done.
Area of triangle, ${A_1} = \dfrac{1}{2}bh$
From the graph, $b = 6 - 3 = 3$
$h = 3$
$\therefore {A_1} = \dfrac{1}{2} \times 3 \times 3$
${A_1} = 4.5Nm$
Now, Area of rectangle (square here)
${A_2} = {a^2}$
Where the side length, $a = 3$
${A_2} = {3^2}$
${A_2} = 9Nm$
The total work done, W is defined as:
$W = {A_1} + {A_2}$
$W = 4.5 + 9$
$W = 13.5Nm{\text{ or }}13.5J$
The correct option is (A).
Additional Information
Work done is highly dependent on the displacement of the body, no matter how much force is applied, if displacement or deformation of the body is zero, work done remains zero. It is a scalar quantity, but it is also a dot product of two vector quantities.
Note: If the shapes are given in forms of functions, then the work done can be calculated by integrating the function and applying limits, and adding up all the integrals. Even this question can be solved as an integral, but applying the formula for area simple shapes makes it easier to solve.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

