
A flask is filled with \[13{\text{ gm}}\] of an ideal gas at a temperature of ${27^ \circ }C$ . Its temperature is raised to \[{52^ \circ }C\] . With pressure remaining the same, what is the mass of the gas that should be released to maintain the temperature of the gas in the flask at ${52^ \circ }C$?
A. \[{\text{2}}{\text{.5 gm}}\]
B. \[{\text{2}}{\text{.0 gm}}\]
C. \[1.5{\text{ gm}}\]
D. $1.0{\text{ gm}}$
Answer
163.5k+ views
Hint:According to ideal gas law, $PV = nRT$ , where $P$ is the pressure of the gas, $V$ is its volume, $n$ is the number of moles, $T$ is temperature and $R$ is the universal gas constant having a value of $8.314{\text{ J}}{{\text{K}}^{ - 1}}{\text{mo}}{{\text{l}}^{ - 1}}$ . Use the ideal gas law to solve the given question.
Formula used:
Ideal gas law,
$PV = nRT$
Here, $P$ is the pressure of the gas,
$V$ is the volume of the gas,
$n$ is the number of moles,
$T$ is the temperature and
$R$ is the universal gas constant having a value of $8.314{\text{ J}}{{\text{K}}^{ - 1}}{\text{mo}}{{\text{l}}^{ - 1}}$ .
Complete answer:
According to ideal gas law,
$PV = nRT$ … (1)
It is given that a flask is filled with \[13{\text{ gm}}\] of an ideal gas at a temperature of ${27^ \circ }C{\text{ }}(300{\text{ K}})$ .
At this condition, let the number of moles of the gas be ${n_1}$.
As the volume of the gas is equivalent to the volume of the flask and as it is given that the pressure is same, therefore, let these values of volume and pressure be $V$ and $P$ respectively.
Also, let \[{m_1} = 13{\text{ gm}}\] and ${T_1} = 300{\text{ K}}$ .
Applying ideal gas law as given in formula (1), we get:
${n_1} = \dfrac{{PV}}{{300R}}$ … (2)
The temperature was then raised to \[{52^ \circ }C{\text{ }}(325{\text{ K}})\] .
At this condition, let the number of moles of the gas be ${n_2}$and let the mass of the gas be \[{m_2}\] .
Also, let ${T_2} = 325{\text{ K}}$ .
Applying ideal gas law as given in formula (1) for this condition, we get:
${n_2} = \dfrac{{PV}}{{325R}}$ … (3)
Dividing equation (2) by (3),
$\dfrac{{{n_1}}}{{{n_2}}} = \dfrac{{325}}{{300}} = \dfrac{{13}}{{12}}$ … (4)
Now, we know that the ratio of the moles of the gas will give us the ratio of the mass of the gas. Thus,
$\dfrac{{{n_1}}}{{{n_2}}} = \dfrac{{{m_1}}}{{{m_2}}}$ … (5)
Substituting the value of $\dfrac{{{n_1}}}{{{n_2}}}$ from equation (4) in the above equation,
$\dfrac{{13}}{{{m_2}}} = \dfrac{{13}}{{12}}$
On simplifying, ${m_2} = 12{\text{ gm}}$ .
Mass of the gas that should be released $ = {m_2} - {m_1} = 13 - 12 = 1{\text{ gm}}$
Thus, the correct option is D.
Note: In the given question, the volume and pressure of the gas remain unchanged on increasing the temperature. We also know that the ratio of the moles of the gas will give us the ratio of the mass of the gas. Thus, you could have also used ${m_1}{T_1} = {m_2}{T_2}$ to get the required mass, as all the other values are constant.
Formula used:
Ideal gas law,
$PV = nRT$
Here, $P$ is the pressure of the gas,
$V$ is the volume of the gas,
$n$ is the number of moles,
$T$ is the temperature and
$R$ is the universal gas constant having a value of $8.314{\text{ J}}{{\text{K}}^{ - 1}}{\text{mo}}{{\text{l}}^{ - 1}}$ .
Complete answer:
According to ideal gas law,
$PV = nRT$ … (1)
It is given that a flask is filled with \[13{\text{ gm}}\] of an ideal gas at a temperature of ${27^ \circ }C{\text{ }}(300{\text{ K}})$ .
At this condition, let the number of moles of the gas be ${n_1}$.
As the volume of the gas is equivalent to the volume of the flask and as it is given that the pressure is same, therefore, let these values of volume and pressure be $V$ and $P$ respectively.
Also, let \[{m_1} = 13{\text{ gm}}\] and ${T_1} = 300{\text{ K}}$ .
Applying ideal gas law as given in formula (1), we get:
${n_1} = \dfrac{{PV}}{{300R}}$ … (2)
The temperature was then raised to \[{52^ \circ }C{\text{ }}(325{\text{ K}})\] .
At this condition, let the number of moles of the gas be ${n_2}$and let the mass of the gas be \[{m_2}\] .
Also, let ${T_2} = 325{\text{ K}}$ .
Applying ideal gas law as given in formula (1) for this condition, we get:
${n_2} = \dfrac{{PV}}{{325R}}$ … (3)
Dividing equation (2) by (3),
$\dfrac{{{n_1}}}{{{n_2}}} = \dfrac{{325}}{{300}} = \dfrac{{13}}{{12}}$ … (4)
Now, we know that the ratio of the moles of the gas will give us the ratio of the mass of the gas. Thus,
$\dfrac{{{n_1}}}{{{n_2}}} = \dfrac{{{m_1}}}{{{m_2}}}$ … (5)
Substituting the value of $\dfrac{{{n_1}}}{{{n_2}}}$ from equation (4) in the above equation,
$\dfrac{{13}}{{{m_2}}} = \dfrac{{13}}{{12}}$
On simplifying, ${m_2} = 12{\text{ gm}}$ .
Mass of the gas that should be released $ = {m_2} - {m_1} = 13 - 12 = 1{\text{ gm}}$
Thus, the correct option is D.
Note: In the given question, the volume and pressure of the gas remain unchanged on increasing the temperature. We also know that the ratio of the moles of the gas will give us the ratio of the mass of the gas. Thus, you could have also used ${m_1}{T_1} = {m_2}{T_2}$ to get the required mass, as all the other values are constant.
Recently Updated Pages
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Charging and Discharging of Capacitor

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
