Answer
Verified
86.4k+ views
Hint: Speed is defined as the distance covered by any object divided by the time taken to cover that distance.
Where Distance is the total length of the path covered by that object.
\[Speed = \dfrac{{Distance}}{{Time}}\]
Complete step-by-step answer:
Given, Farmer goes from point A to B
Then,
\[\begin{array}{*{20}{l}}
{Distance{\text{ }}AB{\text{ }}\left( S \right){\text{ }} = {\text{ }}61{\text{ }}km} \\
{Total{\text{ }}Time{\text{ }}taken{\text{ }}to{\text{ }}travel{\text{ }}61{\text{ }}km{\text{ }}\left( T \right){\text{ }} = 9{\text{ }}hours} \\
{Speed{\text{ }}at{\text{ }}which{\text{ }}farmer{\text{ }}travels{\text{ }}on{\text{ }}foot{\text{ }} = {\text{ }}4{\text{ }}km/hr} \\
{Speed{\text{ }}at{\text{ }}which{\text{ }}farmer{\text{ }}travels{\text{ }}on{\text{ }}bicycle{\text{ }} = {\text{ }}9{\text{ }}km/hr}
\end{array}\]
Let the distance travelled on foot and bicycle be AC and BC respectively.
\[\begin{gathered}
Let{\text{ }}the{\text{ }}time{\text{ }}for{\text{ }}which{\text{ }}farmer{\text{ }}travels{\text{ }}on{\text{ }}foot{\text{ }} = {\text{ }}x{\text{ }}hrs, \\
Then{\text{ }}time{\text{ }}for{\text{ }}which{\text{ }}farmer{\text{ }}travels{\text{ }}on{\text{ }}bicycle{\text{ }} = {\text{ }}\left( {9 - x} \right){\text{ }}hrs \\
\end{gathered} \]
We know that,
\[Distance = Speed \times Time\]
Then, \[AC = 4km/hr \times xhr = 4x\] eqn (i)
\[BC = 9km/hr \times (9 - x)hr = 81 - 9x\] eqn (ii)
Also, \[AB = AC + BC\]
Using value of AB, AC and BC
We get,
\[\begin{gathered}
61 = 4x + 81 - 9x \\
5x = 20 \\
x = 4km \\
\end{gathered} \]
By putting value of x in eqn (i) and eqn (ii) we get,
\[\begin{array}{*{20}{l}}
{AC{\text{ }} = {\text{ }}16{\text{ }}km} \\
{BC = {\text{ }}45{\text{ }}km} \\
{\therefore Distance{\text{ }}travelled{\text{ }}on{\text{ }}foot{\text{ }}by{\text{ }}farmer{\text{ }} = {\text{ }}16{\text{ }}km}
\end{array}\]
Hence option (C) is correct
Note: Always check the unit of all the given data. For example, if the distance is given in km and speed is given in m/s then convert both the quantity into the same unit.
\[1{\text{ }}km{\text{ }} = {\text{ }}1000{\text{ }}m\]
\[1km/hr = \dfrac{5}{{18}}m/s\]
Where Distance is the total length of the path covered by that object.
\[Speed = \dfrac{{Distance}}{{Time}}\]
Complete step-by-step answer:
Given, Farmer goes from point A to B
Then,
\[\begin{array}{*{20}{l}}
{Distance{\text{ }}AB{\text{ }}\left( S \right){\text{ }} = {\text{ }}61{\text{ }}km} \\
{Total{\text{ }}Time{\text{ }}taken{\text{ }}to{\text{ }}travel{\text{ }}61{\text{ }}km{\text{ }}\left( T \right){\text{ }} = 9{\text{ }}hours} \\
{Speed{\text{ }}at{\text{ }}which{\text{ }}farmer{\text{ }}travels{\text{ }}on{\text{ }}foot{\text{ }} = {\text{ }}4{\text{ }}km/hr} \\
{Speed{\text{ }}at{\text{ }}which{\text{ }}farmer{\text{ }}travels{\text{ }}on{\text{ }}bicycle{\text{ }} = {\text{ }}9{\text{ }}km/hr}
\end{array}\]
Let the distance travelled on foot and bicycle be AC and BC respectively.
\[\begin{gathered}
Let{\text{ }}the{\text{ }}time{\text{ }}for{\text{ }}which{\text{ }}farmer{\text{ }}travels{\text{ }}on{\text{ }}foot{\text{ }} = {\text{ }}x{\text{ }}hrs, \\
Then{\text{ }}time{\text{ }}for{\text{ }}which{\text{ }}farmer{\text{ }}travels{\text{ }}on{\text{ }}bicycle{\text{ }} = {\text{ }}\left( {9 - x} \right){\text{ }}hrs \\
\end{gathered} \]
We know that,
\[Distance = Speed \times Time\]
Then, \[AC = 4km/hr \times xhr = 4x\] eqn (i)
\[BC = 9km/hr \times (9 - x)hr = 81 - 9x\] eqn (ii)
Also, \[AB = AC + BC\]
Using value of AB, AC and BC
We get,
\[\begin{gathered}
61 = 4x + 81 - 9x \\
5x = 20 \\
x = 4km \\
\end{gathered} \]
By putting value of x in eqn (i) and eqn (ii) we get,
\[\begin{array}{*{20}{l}}
{AC{\text{ }} = {\text{ }}16{\text{ }}km} \\
{BC = {\text{ }}45{\text{ }}km} \\
{\therefore Distance{\text{ }}travelled{\text{ }}on{\text{ }}foot{\text{ }}by{\text{ }}farmer{\text{ }} = {\text{ }}16{\text{ }}km}
\end{array}\]
Hence option (C) is correct
Note: Always check the unit of all the given data. For example, if the distance is given in km and speed is given in m/s then convert both the quantity into the same unit.
\[1{\text{ }}km{\text{ }} = {\text{ }}1000{\text{ }}m\]
\[1km/hr = \dfrac{5}{{18}}m/s\]
Recently Updated Pages
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main
A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main