
A farmer travelled a distance of 61 km in 9 hours. He partly travelled on foot @ 4 km/hr and partly on bicycle @ 9km/hr. The distance travelled on foot is
A. 14 km
B. 15 km
C. 16 km
D. 17 km
Answer
225.3k+ views
Hint: Speed is defined as the distance covered by any object divided by the time taken to cover that distance.
Where Distance is the total length of the path covered by that object.
\[Speed = \dfrac{{Distance}}{{Time}}\]
Complete step-by-step answer:
Given, Farmer goes from point A to B
Then,
\[\begin{array}{*{20}{l}}
{Distance{\text{ }}AB{\text{ }}\left( S \right){\text{ }} = {\text{ }}61{\text{ }}km} \\
{Total{\text{ }}Time{\text{ }}taken{\text{ }}to{\text{ }}travel{\text{ }}61{\text{ }}km{\text{ }}\left( T \right){\text{ }} = 9{\text{ }}hours} \\
{Speed{\text{ }}at{\text{ }}which{\text{ }}farmer{\text{ }}travels{\text{ }}on{\text{ }}foot{\text{ }} = {\text{ }}4{\text{ }}km/hr} \\
{Speed{\text{ }}at{\text{ }}which{\text{ }}farmer{\text{ }}travels{\text{ }}on{\text{ }}bicycle{\text{ }} = {\text{ }}9{\text{ }}km/hr}
\end{array}\]

Let the distance travelled on foot and bicycle be AC and BC respectively.
\[\begin{gathered}
Let{\text{ }}the{\text{ }}time{\text{ }}for{\text{ }}which{\text{ }}farmer{\text{ }}travels{\text{ }}on{\text{ }}foot{\text{ }} = {\text{ }}x{\text{ }}hrs, \\
Then{\text{ }}time{\text{ }}for{\text{ }}which{\text{ }}farmer{\text{ }}travels{\text{ }}on{\text{ }}bicycle{\text{ }} = {\text{ }}\left( {9 - x} \right){\text{ }}hrs \\
\end{gathered} \]
We know that,
\[Distance = Speed \times Time\]
Then, \[AC = 4km/hr \times xhr = 4x\] eqn (i)
\[BC = 9km/hr \times (9 - x)hr = 81 - 9x\] eqn (ii)
Also, \[AB = AC + BC\]
Using value of AB, AC and BC
We get,
\[\begin{gathered}
61 = 4x + 81 - 9x \\
5x = 20 \\
x = 4km \\
\end{gathered} \]
By putting value of x in eqn (i) and eqn (ii) we get,
\[\begin{array}{*{20}{l}}
{AC{\text{ }} = {\text{ }}16{\text{ }}km} \\
{BC = {\text{ }}45{\text{ }}km} \\
{\therefore Distance{\text{ }}travelled{\text{ }}on{\text{ }}foot{\text{ }}by{\text{ }}farmer{\text{ }} = {\text{ }}16{\text{ }}km}
\end{array}\]
Hence option (C) is correct
Note: Always check the unit of all the given data. For example, if the distance is given in km and speed is given in m/s then convert both the quantity into the same unit.
\[1{\text{ }}km{\text{ }} = {\text{ }}1000{\text{ }}m\]
\[1km/hr = \dfrac{5}{{18}}m/s\]
Where Distance is the total length of the path covered by that object.
\[Speed = \dfrac{{Distance}}{{Time}}\]
Complete step-by-step answer:
Given, Farmer goes from point A to B
Then,
\[\begin{array}{*{20}{l}}
{Distance{\text{ }}AB{\text{ }}\left( S \right){\text{ }} = {\text{ }}61{\text{ }}km} \\
{Total{\text{ }}Time{\text{ }}taken{\text{ }}to{\text{ }}travel{\text{ }}61{\text{ }}km{\text{ }}\left( T \right){\text{ }} = 9{\text{ }}hours} \\
{Speed{\text{ }}at{\text{ }}which{\text{ }}farmer{\text{ }}travels{\text{ }}on{\text{ }}foot{\text{ }} = {\text{ }}4{\text{ }}km/hr} \\
{Speed{\text{ }}at{\text{ }}which{\text{ }}farmer{\text{ }}travels{\text{ }}on{\text{ }}bicycle{\text{ }} = {\text{ }}9{\text{ }}km/hr}
\end{array}\]

Let the distance travelled on foot and bicycle be AC and BC respectively.
\[\begin{gathered}
Let{\text{ }}the{\text{ }}time{\text{ }}for{\text{ }}which{\text{ }}farmer{\text{ }}travels{\text{ }}on{\text{ }}foot{\text{ }} = {\text{ }}x{\text{ }}hrs, \\
Then{\text{ }}time{\text{ }}for{\text{ }}which{\text{ }}farmer{\text{ }}travels{\text{ }}on{\text{ }}bicycle{\text{ }} = {\text{ }}\left( {9 - x} \right){\text{ }}hrs \\
\end{gathered} \]
We know that,
\[Distance = Speed \times Time\]
Then, \[AC = 4km/hr \times xhr = 4x\] eqn (i)
\[BC = 9km/hr \times (9 - x)hr = 81 - 9x\] eqn (ii)
Also, \[AB = AC + BC\]
Using value of AB, AC and BC
We get,
\[\begin{gathered}
61 = 4x + 81 - 9x \\
5x = 20 \\
x = 4km \\
\end{gathered} \]
By putting value of x in eqn (i) and eqn (ii) we get,
\[\begin{array}{*{20}{l}}
{AC{\text{ }} = {\text{ }}16{\text{ }}km} \\
{BC = {\text{ }}45{\text{ }}km} \\
{\therefore Distance{\text{ }}travelled{\text{ }}on{\text{ }}foot{\text{ }}by{\text{ }}farmer{\text{ }} = {\text{ }}16{\text{ }}km}
\end{array}\]
Hence option (C) is correct
Note: Always check the unit of all the given data. For example, if the distance is given in km and speed is given in m/s then convert both the quantity into the same unit.
\[1{\text{ }}km{\text{ }} = {\text{ }}1000{\text{ }}m\]
\[1km/hr = \dfrac{5}{{18}}m/s\]
Recently Updated Pages
Mutually Exclusive vs Independent Events: Key Differences Explained

Area vs Volume: Key Differences Explained for Students

150 Marks in JEE Mains Percentile 2026 Rank NITs

110 Marks in JEE Mains Percentile 2026 Rank NITs OBC

120 Marks in JEE Mains 2026 Percentile Rank and NITs

130 Marks in JEE Mains Percentile 2026 Rank NITs CSE Admission

Trending doubts
JEE Main 2026: City Intimation Slip and Exam Dates Released, Application Form Closed, Syllabus & Eligibility

JEE Main Syllabus 2026: Download Detailed Subject-wise PDF

JEE Main Marks vs Percentile vs Rank 2026: Calculate Percentile and Rank Using Marks

JEE Main 2026 Exam Date (OUT): Session 1 and 2 Schedule, Registration and More

JEE Main Previous Year Question Papers (2014–2025) with Answer Keys and Solutions

JEE Main 2026 City Intimation Slip Live (OUT): Paper 1 & Paper 2 Exam Dates Announced

Other Pages
NCERT Solutions For Class 9 Maths Chapter 9 Circles

Fuel Cost Calculator – Estimate Your Journey Expenses Easily

NCERT Solutions for Class 9 Maths Chapter 11 Surface Area and Volume 2025-26

NCERT Solutions for Class 9 Maths Chapter 11 Exercise 11.3 Surface Areas and Volumes

NCERT Solutions For Class 9 Maths Chapter 12 Statistics

NCERT Solutions For Class 9 Maths Chapter 10 Heron's Formula

