A dynamometer D is attached to two blocks of masses $6\,kg$ and $4\,kg$ as shown in the figure. The reading of the dynamometer is?
A. $18\,N$
B. $28\,N$
C. $38\,N$.
D. $48\,N$
Answer
Verified
116.4k+ views
Hint In the question, masses of the two blocks are given. By using the equation of the newton’s second law of motion and substituting the known parameters in that equation, we get the value of the force recorded by the dynamometer.
Formula used:
$F = ma$
Where,
$F$ be the force, $m$ be the mass and $a$ be the acceleration.
Complete step by step answer
Let x be the force recorded by the dynamometer
Given that the mass of the two blocks are $6\,kg\,{\text{and }}4kg$.
We know that, from the diagram both of the masses are applied in the same direction which means it is applied in one direction.
The largest force applied on the mass is $50\,N$ and the smallest force applied on the mass is $30\,N.$
So, the force is acting in the same direction. It lies between 50 and 30.
It can be written as,
$30 \ll x \ll 50$
The resultant force on the mass, we get
$\begin{gathered}
6\,kg\,{\text{mass}} = 50 - x \\
4\,kg\,{\text{mass}}\,\, = \,x - 30 \\
\end{gathered} $
${\text{Force}}\left( F \right) = {\text{mass}}\left( m \right) \times {\text{acceleration}}\left( a \right)$
Convert the equation of force in terms of the acceleration, we get
${\text{Acceleration}}\left( a \right) = \dfrac{{{\text{Force}}\left( F \right)}}{{{\text{mass}}\left( m \right)}}$
Comparing the two masses and substitute the known equation in the above equation, we get
$\dfrac{{\left( {50 - x} \right)}}{6} = \dfrac{{\left( {x - 30} \right)}}{4}$
Simplify the above equation, we get
$200 - x = 6x - 180$
$x = 38\,N.$
Therefore, the reading of the dynamometer is $38\,N.$
Hence from the above options, option C is correct.
Note In the question, two masses are given. The masses are acting in the same direction. So, the force is also acting on the same plane. So, we know the expression of mass and the force. By substituting the expression in the equation of motion, we get the result.
Formula used:
$F = ma$
Where,
$F$ be the force, $m$ be the mass and $a$ be the acceleration.
Complete step by step answer
Let x be the force recorded by the dynamometer
Given that the mass of the two blocks are $6\,kg\,{\text{and }}4kg$.
We know that, from the diagram both of the masses are applied in the same direction which means it is applied in one direction.
The largest force applied on the mass is $50\,N$ and the smallest force applied on the mass is $30\,N.$
So, the force is acting in the same direction. It lies between 50 and 30.
It can be written as,
$30 \ll x \ll 50$
The resultant force on the mass, we get
$\begin{gathered}
6\,kg\,{\text{mass}} = 50 - x \\
4\,kg\,{\text{mass}}\,\, = \,x - 30 \\
\end{gathered} $
${\text{Force}}\left( F \right) = {\text{mass}}\left( m \right) \times {\text{acceleration}}\left( a \right)$
Convert the equation of force in terms of the acceleration, we get
${\text{Acceleration}}\left( a \right) = \dfrac{{{\text{Force}}\left( F \right)}}{{{\text{mass}}\left( m \right)}}$
Comparing the two masses and substitute the known equation in the above equation, we get
$\dfrac{{\left( {50 - x} \right)}}{6} = \dfrac{{\left( {x - 30} \right)}}{4}$
Simplify the above equation, we get
$200 - x = 6x - 180$
$x = 38\,N.$
Therefore, the reading of the dynamometer is $38\,N.$
Hence from the above options, option C is correct.
Note In the question, two masses are given. The masses are acting in the same direction. So, the force is also acting on the same plane. So, we know the expression of mass and the force. By substituting the expression in the equation of motion, we get the result.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Chemical Equation - Important Concepts and Tips for JEE
Trending doubts
Charging and Discharging of Capacitor
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
Inductive Effect and Acidic Strength - Types, Relation and Applications for JEE
Which of the following is the smallest unit of length class 11 physics JEE_Main
JEE Main 2025 Maths Online - FREE Mock Test Series
JEE Main 2024 Physics Question Paper with Solutions 27 January Shift 1
Other Pages
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 8 Mechanical Properties of Solids
Thermodynamics Class 11 Notes CBSE Physics Chapter 11 (Free PDF Download)
NCERT Solutions for Class 11 Physics Chapter 3 Motion In A Plane
Ideal and Non-Ideal Solutions Raoult's Law - JEE