
A Diwali rocket ascends with a net upward acceleration \[20m{s^{ - 2}}\] from rest at \[t = 0\] seconds. The fuel gets exhausted at \[t = 10\] seconds and continues to move up. Find the maximum height attained by it.
Answer
163.5k+ views
Hint:When the rocket is accelerated, it reaches a height of \[1000\,m\] and continues to move upward due to some velocity. At its peak point, the rocket will have a velocity \[{v_2}\] of \[0\,m/s\].
Formula used:
Distance formula
$S=ut+\dfrac{1}{2}at^2$
Where, \[S = \] Distance
\[u = \] Velocity
\[t = \] Time
\[a = \] Acceleration
Initial velocity, \[v{\rm{ }} = {\rm{ }}u{\rm{ }} + {\rm{ }}at\]
Where, \[u = \] Velocity
\[t = \] Time
\[a = \] Acceleration
External velocity, $V^2=v^2+2gs$
\[v = \] Initial velocity
\[s = \] distance
\[g = \]gravitational acceleration
Complete step by step solution:
Velocity, \[u = 10m/s\]
Net acceleration, $a=20\,m/s^2$
The gravity acceleration, $g=-10\,m/s^2$
Time, \[T{\rm{ }} = {\rm{ }}10{\rm{ }}s\]
We know that $S=ut+\dfrac{1}{2}at^2$
Substitute all the values and we get
$S=0(10)+\dfrac{1}{2}(20)(10)^2$
Simplifying and we get
\[S{\rm{ }} = {\rm{ }}1000{\rm{ }}m\]
Let's say the rocket had a velocity of \[{V_1}\] when it ascended \[1000m\].
\[{V_1}{\rm{ }} = {\rm{ }}u{\rm{ }} + {\rm{ }}at\]
Substituting the values and we get
\[ \Rightarrow {V_1}{\rm{ }} = {\rm{ }}0{\rm{ }} + {\rm{ }}20(10)\]
Simplifying and we get
\[ \Rightarrow {V_1}{\rm{ }} = {\rm{ }}200{\rm{ }}m/s\]
when the rocket was at a height of \[1000m\], it was moving upward with a velocity of \[ \Rightarrow {V_1}{\rm{ }} = {\rm{ }}200{\rm{ }}m/s\].
At its peak point, the rocket will have a velocity \[{V_2}\] of \[0m/s\] .
Substituting the values and we get
\[ \Rightarrow 0{\rm{ }} = {\rm{ }}200(200){\rm{ }} - {\rm{ }}2(10)s\]
Simplifying and we get
\[ \Rightarrow s{\rm{ }} = {\rm{ }}2000m\]
Total height attained by rocket \[ = 1000{\rm{ }} + {\rm{ }}2000{\rm{ }}= {\rm{ }}3000{\rm{ }}m\]
Therefore, the maximum height attained by it is 3000m.
NoteHere the value of acceleration due to gravity is taken as \[10\,m/s^2\] but if mentioned in the question acceleration due to gravity should be taken as \[9.8\,m/{s^2}\]. Acceleration is defined as the rate of change of velocity with respect to time. Since acceleration has both a magnitude and a direction, it is a vector quantity. Additionally, it is the first derivative of velocity with respect to time or the second derivative of position with respect to time.
Formula used:
Distance formula
$S=ut+\dfrac{1}{2}at^2$
Where, \[S = \] Distance
\[u = \] Velocity
\[t = \] Time
\[a = \] Acceleration
Initial velocity, \[v{\rm{ }} = {\rm{ }}u{\rm{ }} + {\rm{ }}at\]
Where, \[u = \] Velocity
\[t = \] Time
\[a = \] Acceleration
External velocity, $V^2=v^2+2gs$
\[v = \] Initial velocity
\[s = \] distance
\[g = \]gravitational acceleration
Complete step by step solution:
Velocity, \[u = 10m/s\]
Net acceleration, $a=20\,m/s^2$
The gravity acceleration, $g=-10\,m/s^2$
Time, \[T{\rm{ }} = {\rm{ }}10{\rm{ }}s\]
We know that $S=ut+\dfrac{1}{2}at^2$
Substitute all the values and we get
$S=0(10)+\dfrac{1}{2}(20)(10)^2$
Simplifying and we get
\[S{\rm{ }} = {\rm{ }}1000{\rm{ }}m\]
Let's say the rocket had a velocity of \[{V_1}\] when it ascended \[1000m\].
\[{V_1}{\rm{ }} = {\rm{ }}u{\rm{ }} + {\rm{ }}at\]
Substituting the values and we get
\[ \Rightarrow {V_1}{\rm{ }} = {\rm{ }}0{\rm{ }} + {\rm{ }}20(10)\]
Simplifying and we get
\[ \Rightarrow {V_1}{\rm{ }} = {\rm{ }}200{\rm{ }}m/s\]
when the rocket was at a height of \[1000m\], it was moving upward with a velocity of \[ \Rightarrow {V_1}{\rm{ }} = {\rm{ }}200{\rm{ }}m/s\].
At its peak point, the rocket will have a velocity \[{V_2}\] of \[0m/s\] .
Substituting the values and we get
\[ \Rightarrow 0{\rm{ }} = {\rm{ }}200(200){\rm{ }} - {\rm{ }}2(10)s\]
Simplifying and we get
\[ \Rightarrow s{\rm{ }} = {\rm{ }}2000m\]
Total height attained by rocket \[ = 1000{\rm{ }} + {\rm{ }}2000{\rm{ }}= {\rm{ }}3000{\rm{ }}m\]
Therefore, the maximum height attained by it is 3000m.
NoteHere the value of acceleration due to gravity is taken as \[10\,m/s^2\] but if mentioned in the question acceleration due to gravity should be taken as \[9.8\,m/{s^2}\]. Acceleration is defined as the rate of change of velocity with respect to time. Since acceleration has both a magnitude and a direction, it is a vector quantity. Additionally, it is the first derivative of velocity with respect to time or the second derivative of position with respect to time.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Charging and Discharging of Capacitor

Other Pages
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement
