
A dielectric slab is inserted between the plates of a capacitor. The charge on the capacitor is $Q$ and the magnitude of the induced charge on each surface of the dielectric is $Q'$.
A) $Q'$ may be larger than $Q$
B) $Q'$ must be larger than $Q$
C) $Q'$ must be equal to $Q$
D) $Q'$ must be smaller than $Q$
Answer
232.8k+ views
Hint: When a dielectric is present between the plates of a capacitor, it will modify the electric field that exists between the two plates of the capacitor. Charges will be induced in the dielectric such that it will produce an electric field opposing the original electric field.
Formula used:
-Charge in a dielectric: $Q' = Q\left[ {1 - \dfrac{1}{k}} \right]$ where $Q$ is the charge on the plates and \[k\] is the dielectric constant.
Complete step by step answer:
In the absence of a dielectric, a uniform electric field is present between the capacitor plates. However, when a dielectric is present, as mentioned in the hint, an electric field will be induced in it such that it will oppose the external electric field. This is due to the polarization of charges inside the dielectric material. Hence the charge induced in the dielectric will be due to the property of the dielectric. The magnitude of this charge is given as
$Q' = Q\left[ {1 - \dfrac{1}{k}} \right]$
Now the dielectric constant of any medium is greater than one while vacuum has a dielectric constant of 1. Hence the term inside the square bracket will always have a value less than 1.
So, the charge induced in the dielectric will always be less than the charge on the plates of the capacitor.
So, $Q' < Q$. Hence option (D) is correct.
Note: While the vacuum has a dielectric constant of 1, there is no matter in the vacuum to induce any charges, so again no charge will be induced in it. The charges in the dielectric medium will be removed if the capacitor plates do not have any charges either.
Formula used:
-Charge in a dielectric: $Q' = Q\left[ {1 - \dfrac{1}{k}} \right]$ where $Q$ is the charge on the plates and \[k\] is the dielectric constant.
Complete step by step answer:
In the absence of a dielectric, a uniform electric field is present between the capacitor plates. However, when a dielectric is present, as mentioned in the hint, an electric field will be induced in it such that it will oppose the external electric field. This is due to the polarization of charges inside the dielectric material. Hence the charge induced in the dielectric will be due to the property of the dielectric. The magnitude of this charge is given as
$Q' = Q\left[ {1 - \dfrac{1}{k}} \right]$
Now the dielectric constant of any medium is greater than one while vacuum has a dielectric constant of 1. Hence the term inside the square bracket will always have a value less than 1.
So, the charge induced in the dielectric will always be less than the charge on the plates of the capacitor.
So, $Q' < Q$. Hence option (D) is correct.
Note: While the vacuum has a dielectric constant of 1, there is no matter in the vacuum to induce any charges, so again no charge will be induced in it. The charges in the dielectric medium will be removed if the capacitor plates do not have any charges either.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Uniform Acceleration in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

