
A dielectric slab is inserted between the plates of a capacitor. The charge on the capacitor is $Q$ and the magnitude of the induced charge on each surface of the dielectric is $Q'$.
A) $Q'$ may be larger than $Q$
B) $Q'$ must be larger than $Q$
C) $Q'$ must be equal to $Q$
D) $Q'$ must be smaller than $Q$
Answer
145.8k+ views
Hint: When a dielectric is present between the plates of a capacitor, it will modify the electric field that exists between the two plates of the capacitor. Charges will be induced in the dielectric such that it will produce an electric field opposing the original electric field.
Formula used:
-Charge in a dielectric: $Q' = Q\left[ {1 - \dfrac{1}{k}} \right]$ where $Q$ is the charge on the plates and \[k\] is the dielectric constant.
Complete step by step answer:
In the absence of a dielectric, a uniform electric field is present between the capacitor plates. However, when a dielectric is present, as mentioned in the hint, an electric field will be induced in it such that it will oppose the external electric field. This is due to the polarization of charges inside the dielectric material. Hence the charge induced in the dielectric will be due to the property of the dielectric. The magnitude of this charge is given as
$Q' = Q\left[ {1 - \dfrac{1}{k}} \right]$
Now the dielectric constant of any medium is greater than one while vacuum has a dielectric constant of 1. Hence the term inside the square bracket will always have a value less than 1.
So, the charge induced in the dielectric will always be less than the charge on the plates of the capacitor.
So, $Q' < Q$. Hence option (D) is correct.
Note: While the vacuum has a dielectric constant of 1, there is no matter in the vacuum to induce any charges, so again no charge will be induced in it. The charges in the dielectric medium will be removed if the capacitor plates do not have any charges either.
Formula used:
-Charge in a dielectric: $Q' = Q\left[ {1 - \dfrac{1}{k}} \right]$ where $Q$ is the charge on the plates and \[k\] is the dielectric constant.
Complete step by step answer:
In the absence of a dielectric, a uniform electric field is present between the capacitor plates. However, when a dielectric is present, as mentioned in the hint, an electric field will be induced in it such that it will oppose the external electric field. This is due to the polarization of charges inside the dielectric material. Hence the charge induced in the dielectric will be due to the property of the dielectric. The magnitude of this charge is given as
$Q' = Q\left[ {1 - \dfrac{1}{k}} \right]$
Now the dielectric constant of any medium is greater than one while vacuum has a dielectric constant of 1. Hence the term inside the square bracket will always have a value less than 1.
So, the charge induced in the dielectric will always be less than the charge on the plates of the capacitor.
So, $Q' < Q$. Hence option (D) is correct.
Note: While the vacuum has a dielectric constant of 1, there is no matter in the vacuum to induce any charges, so again no charge will be induced in it. The charges in the dielectric medium will be removed if the capacitor plates do not have any charges either.
Recently Updated Pages
Difference Between Vapor and Gas: JEE Main 2024

Area of an Octagon Formula - Explanation, and FAQs

Charle's Law Formula - Definition, Derivation and Solved Examples

Central Angle of a Circle Formula - Definition, Theorem and FAQs

Average Force Formula - Magnitude, Solved Examples and FAQs

Boyles Law Formula - Boyles Law Equation | Examples & Definitions

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Ideal and Non-Ideal Solutions Raoult's Law - JEE

Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11
